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Self-diffusion in isotropic and liquid crystalline
phases of fd virus colloidal rods: a combined
single particle tracking and differential
dynamic microscopy study†

Eric Grelet, *a Vincent A. Martinez b and Jochen Arlt *b

In this article, we investigate the dynamics of self-organised suspensions formed by rod-like fd virus

colloids. Two methods have been employed for analysing fluorescence microscopy movies: single

particle tracking (SPT) in direct space and differential dynamic microscopy (DDM) in reciprocal space.

We perform a quantitative analysis on this anisotropic system with complex diffusion across different

self-assembled states, ranging from dilute and semi-dilute liquids to nematic and smectic organisations.

By leveraging the complementary strengths of SPT and DDM, we provide new insights in the dynamics

of viral colloidal rods, such as long time diffusion coefficients in the smectic phase. We further discuss

the advantages and limitations of both methods for studying the intricate dynamics of anisotropic

colloidal systems.

1 Introduction

Brownian colloids exhibit a rich variety of dynamic behaviours,
which can usually be tuned by modulating particle interactions
and concentration. Among these particles, rod-like colloids,
characterised by shape anisotropy, display intricate phase
behaviour, giving rise to the formation of liquid crystalline
organisations. This results in a more complex dynamics, which,
beyond its phase dependence related to the dimensionality of
the translational and orientational orders, is strongly anisotropic,
having therefore distinct diffusion along and perpendicular to
the rod long axis.1 Various methods have been devised to assess
the diffusion of rod-shaped particles, including dynamic light
scattering,2,3 fluorescence correlation spectroscopy,4,5 X-ray
photon correlation spectroscopy,6 fluorescence recovery after
photo-bleaching,7,8 and single particle tracking (SPT).9,10 How-
ever, many of these approaches have been limited to the
exploration of the isotropic liquid phase, as working with liquid
crystalline organisation involves monitoring sample orienta-
tion and addressing anisotropic optical properties like birefrin-
gence, leading to scarce studies in the dense self-assembled
states. One promising technique is differential dynamic

microscopy (DDM),11 which has been recently successfully used
to characterise dilute12–14 as well as dense suspensions15 of
anisotropic diffusers.

Here, we aim at using and comparing differential dynamics
microscopy and single particle tracking to investigate the
dynamics of a model system of colloidal rod-like particles in
a wide range of concentrations, from disordered liquid to
lamellar liquid crystalline phases. As rod-shaped colloidal rods,
we have employed the filamentous fd viruses widely used as
model system in soft matter.16,17 Such micrometer long viral
rods are monodisperse in shape and size and have been shown
to behave nearly as hard rods.18–21 This biological system is
therefore suitable for studying the dynamics in the different
self-assembled liquid crystalline states by fluorescence micro-
scopy using single particle tracking. Specifically, the anisotro-
pic diffusion coefficients have been determined both in the
nematic10 and the smectic mesophases, where hopping type
diffusion has been evidenced.22–24 This approach to investigate
dynamical phenomena at the individual particle scale has been
found to be very efficient and fruitful; however, it also has some
intrinsic drawbacks such as limited statistics as well as some
limitation for probing the long times (loss of tracked particles
and photobleaching of the dyes). By contrast, DDM analyses the
temporal intensity fluctuations over a range of length scales to
extract the dynamics of the system by providing the intermedi-
ate scattering function (ISF).11 As there is no need to resolve
individual particles it is often possible to use large fields of view
to achieve high statistics. The measured ISFs may allow to
identify the nature of the physical mechanisms responsible for
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the particles dynamics of a sample. However, quantification of
these phenomena requires an explicit model of the ISFs to
extract relevant kinetic or dynamical parameters. Often simple
generic models are sufficient to account for complex systems
such as colloidal gels,25 but more sophisticated models enable
for instance to extract detailed population averaged dynamical
parameters, e.g. for suspensions of active swimmers.26–28

Although it is in principle straightforward to generalise the
analysis to direction dependent dynamics, DDM studies focus-
ing on anisotropic fluids such as liquid crystals are quite scarce
to date.12,15,29,30 In this paper, both DDM and SPT methods are
performed and compared by probing the whole self-organised
phases of fd suspensions, from dilute and dense isotropic
liquid phases to nematic and smectic states, and new insights
in the dynamics of this rod system are presented.

2 Methods

As system of colloidal rods, we use the filamentous M13KE
bacteriophage, a mutant of fd, which has a contour length L = 1
mm, a diameter d = 7 nm, and is semi-flexible with a persistence
length of Lp = 2.8 mm,19 resulting in a rod end-to-end distance
Le = 0.94 mm according to Kratky & Porod model for isolated
polymeric chains.31 For some samples, we also use a stiffer
mutant, Y21M, which exhibits a persistence length Lp = 9.9 mm
and has Le C L = 0.92 mm.19,32 Both viral mutants have there-
fore similar end-to-end length and identical diameter. They are
grown using the ER2738 strain as E. coli host bacteria and
purified following standard biological protocols. A small frac-
tion of viruses (in the range of 1 : 105 to 1 : 103 depending on the
experiment, see details below) is labelled with green (Alexa
Fluor 488-TFP ester, Invitrogen) or red (Dylight550-NHS ester,
ThermoFischer) dyes to enable their visualisation by fluores-
cence microscopy. Samples were imaged using a 100� NA 1.4
UPLSAPO objective on an IX71 Olympus microscope equipped
with a NEO sCMOS camera (Andor) having a pixel size of 13 mm
in binning 2, and a Omicron LedHub as light source. Time
series (33 fps) are recorded for different dilutions of virus
suspensions initially dialysed against a Tris–HCl–NaCl buffer
at pH 8.2 and ionic strength I = 20 mM, ranging from isotropic
liquid, to (chiral) nematic and smectic mesophases. In the
liquid crystalline phases, the samples exhibit a planar orienta-
tion between cover slip and glass slide, as illustrated in Fig. 1.
The same set of optical fluorescence data is used for analysis by
single particle tracking (using in-house designed Matlab codes)
or by differential dynamics microscopy (using codes developed
with LabView).

In the next paragraphs, we will give an outline of the two
methods compared in this manuscript, as they are both well
established in literature.33,34

2.1 Single particle tracking (SPT)

The experimental conditions are optimised for single particle
tracking analysis: only a small fraction (1 : 104 to 105) of tracers,
i.e. viruses labelled with fluorescent dyes (see above), are added

to the sample. This allows for a good detection of uniquely
distinguishable trajectories r(t) obtained using a custom-
written particle tracking algorithm developed in MATLAB
(MathWorks).22,24,35 The mean squared displacement (MSD)
at lag time t defined as MSD(t) = h[r(t + t) � r(t)]2it where h. . .it
denotes the average over start times t, is calculated for each
trace, before being first averaged over the total number of
detected particles (a few hundreds per virus concentration)
and then fitted to determine the corresponding anisotropic
diffusion coefficients D8/> and exponents g8/> according to
MSD8/> = 2D8/>tg8/> in the direction parallel 8 and perpendi-
cular > to the mean particle orientation.23 Such an approach
allows for a direct and instantaneous access and visualisation
of the particle anisotropy in the liquid crystalline phases.

2.2 Differential dynamic microscopy (DDM)

The same set of data as described in the section above are used
for DDM analysis. As the conditions are not optimal in this case
due to weak signal-to-noise ratio, a further specific sample is

Fig. 1 (A) Snapshot showing a 26.0 mm square sub-region extracted from
a fluorescence microscopy movie acquired for a sample in the smectic
phase. Only a small fraction of viruses (see Methods) has been labelled with
red dyes. The white line indicates the average virus orientation, i.e. the
nematic director. (B) The resulting differential intensity correlation function
(DICF) spectrum (see Fig. S1 for details, ESI†) displays clear anisotropy. For
analysis the DICF is averaged over 151 wide sectors, as indicated for the
parallel and perpendicular directions.
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prepared in the smectic range with a much higher fraction of
red labelled viruses (around 1 : 103) and for which very long
movies (up to 22 min) are recorded.

DDM characterises the spatio-temporal density fluctuations
within a sample by computing the differential intensity correla-
tion function (DICF), also known as the image structure
function:11

g(q,t) = h|Ĩ(q,t + t) � Ĩ(q,t)|2it (1)

with Ĩ(q,t) the (2D) Fourier transform of the image intensity
I(r,t) and lag time t. By assuming that the intensity fluctuations
in the image are proportional to fluctuations in sample density
(DI p Dr), the DICF can be written as12

g(q,t) = A(q)[1 � f (q,t)] + B(q), (2)

where A(q) characterises the signal amplitude and B(q)
accounts for uncorrelated background noise. Here f (q,t), often
referred to as the intermediate scattering function (ISF), is the
q-Fourier component of the probability of the particle displace-
ments, dr = rj (t + t) � rj (t),

f (q,t) = heiq�drij,t, (3)

with brackets denoting averages over all particles j and times t.
In most of the ‘standard’ DDM experiments11,34 the underlying
dynamics are isotropic and the ISF (and thus the DICF) only
depends on |q| = q. The 2-dimensional DICF can then be
reduced to g(q,t) by taking azimuthal averages, and by fitting
with a suitable model ISF function, the dynamics can be
quantified (Fig. S2, ESI†). DDM can also be used to characterise
anisotropic motion, as encountered in the nematic and smectic
phases of our virus suspensions. Here we follow the analysis
scheme introduced in previous publications12,15 where the
DICF is subdivided into angular sectors, which get analysed
separately in order to take the directional variation of the
dynamics into account.

For anisotropic diffusive motion the ISF is then given by

f (q,t) = e�G(q,y)t, (4)

where y is the angle between q and the nematic director (mean
particle orientation), as shown in Fig. 1. The decay rate G(q,y) =
D(y)q2 is linked to the direction dependent diffusion coefficient
D(y) = D8 cos2 y + D> sin2 y. The dynamics of most of our
experimental data is well described by this simple ISF, but for
the densest sample in the smectic range a stretched exponen-
tial model provides a more consistent fit to extract the under-
lying dynamics in the parallel direction:

f (q,t) = e�(G(q,y)t)b(q,y)

, (5)

where b is the stretch exponent. For b = 1 this reduces to the
diffusive model, whereas b o 1 corresponds to sub-diffusive
motion.

To apply the DDM analysis approach as defined in eqn (4)
and (5), one has to assume that all particles throughout the
analysed region of interest are aligned in the same direction,
which stays constant over time. In practice, virus suspensions
only have finite sized domains of unidirectional alignment

(uniform director). Therefore we first visually identify square
sub-regions of interest (ROI) of 400 � 400 pixels which exhibit
good alignment and which are free of topological defects within
the originally 640 � 1080 pixels movie frames. For each of these
sub-regions we calculate the 2D DICF, determine the direction
of slowest dynamics and then use 12 angular sectors of 151
width centred on this direction for further analysis. Averaging
these sets of g(q,y,t) for several ROIs increases the statistics and
therefore improves the signal-to-noise ratio.

In order to reliably extract diffusion coefficients from data
which are fairly noisy and also affected by photo-bleaching, we
first fit the DICFs based on eqn (2) and (4) independently for
each q to extract G(q,y). From this we estimate the long time
diffusion coefficient D(y) for each angular sector by fitting

G(q,y) = G0(y) + D(y)q2, (6)

over a suitable range of low q values. The (small) offset G0 helps
to account for the extra decay component introduced by photo-
bleaching of our fluorescent samples as well as the difficulty to
quantify decays at very low q (q - 0), when 1/G starts to exceed
the movie duration. This offset becomes relevant for the very
slow dynamics of the dense nematic and smectic phase sam-
ples (see ESI† for details).

The signal amplitude A(q) is often simply treated as a
fitting parameter in eqn (2), but it can be used to extract
additional information about the sample.36–38 For monodis-
perse particles in shape and size we can approximate the
amplitude as12,38

A(q) E Nk2|OTF(q)|2h|P(q)|2ij,k S(q), (7)

where N is the number of particles in the field of view, k is the
overall intensity contrast of a single particle, OTF(q) is the
optical transfer function of the objective (assumed to be
rotationally symmetric), P(q) is the particle’s form factor and
S(q) is the sample’s static structure factor. For simplicity we
have already neglected effects of the objective’s finite depth of
field.38,39 Note that the form factor contribution h|P(q)|2ij,k gets
averaged over all particles in the field of view and all time
points included in the DDM analysis. Therefore A(q) remains
isotropic even for very anisotropic particles provided they are
free to sufficiently explore different orientations during the
duration of the analysed movies, as in the disordered liquid
phase. To date, A(q) has therefore been considered as isotropic,
but in the nematic and smectic phases of virus suspensions as
discussed here, its anisotropy becomes clearly evident and has
to be taken into account.

Note that in our experiments only the small fraction of
viruses which are fluorescently labelled (‘tracers’) contributes
to the DDM signal, so that we are only imaging the dilute subset
of viruses and thus there is no effect from the sample structure
factor (S(q) B 1). This also implies that dynamical correlations
between different tracers can be ignored and therefore the
diffusion coefficient measured by DDM is the self-diffusion
coefficient of the tracers.
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3 Results

Experimental data are acquired for a wide range of concen-
trations and the resulting movies are analysed using single
particle tracking and differential dynamic microscopy as
detailed in the previous sections. We found that we could
successfully extract the diffusion coefficients across the whole
range of packing fractions as shown in Fig. 2. In the following
we will present the data for different regimes in more detail.

3.1 Dilute isotropic liquid samples

The translational diffusion coefficient D0 of a Brownian rod in
the isotropic phase is the geometrical average of the diffusion
coefficients along, D0,8, and perpendicular, D0,> to the rod long

axis: D0 ¼
1

3
D0;k þ 2D0;?
� �

. In the limit of infinite dilution, the

rods move without interacting with each other and only experi-
ence hydrodynamic friction with the solvent. This leads to
D0,8/> = kBT/g8/> where g8/> are the friction coefficients. For

slender and stiff rods, g8/> are given by gk ¼
2pZ0L
lnfL=dg and g> =

2g8 with L and d the rod length and diameter respectively, and
Z0 = 0.89 � 10�3 Pa s the water viscosity at room temperature
(25 1C).40 Numerically, by neglecting both the M13KE virus
semi-flexibility and the electrostatic interactions, this gives
Dtheo

0 = 2.4 mm2 s�1 to be compared to the experimental ones,
DSPT

0 = 2.2 mm2 s�1 and DDDM
0 = 2.3 mm2 s�1, obtained by SPT

and DDM, respectively. Overall, an excellent agreement is
found between the two experimental values and the theoretical
one, validating our experimental setup and our methods for
data analysis.

3.2 Semi-dilute regime

As the virus concentration is increased from the dilute liquid
phase, the dynamics starts to slow down markedly while
still remaining isotropic (Fig. 2 and 3). This can be seen in
the drop of the diffusion coefficient as shown in Fig. 3, where
the logarithmic concentration axis helps to distinguish two
regimes. In the dilute regime the diffusion coefficient shows
nearly no concentration dependence, remaining close to the
one at infinite dilution D0. As the concentration is increased the
semi-flexible rods start to interact with each other, leading to a
strong slowdown in the semi-dilute regime. The transition
between the two regimes appears significantly above the over-
lap concentration C* p 1/Le

3 I 0.07 mg mL�1 (Fig. 3).
Doi & Edwards seminal theory for stiff rods in the needle-like

limit predicts D/D0 to be a function of the rod concentration
above the overlap concentration C*, and to converge to D/D0 =
0.5 near the isotropic-to-nematic transition.42 The underlying
physical mechanism assumes that rods are caged in tubes set
by the surrounding rods, hindering their lateral mobility with-
out major effect on their longitudinal motion. Recent experi-
mental evidence supports the existence of such tubes,43 which
have been found to form quite deeply in the semi-dilute regime
in agreement with the results shown in Fig. 3.

Rotational diffusion information is essential for testing
more advanced theories,43,44 but it is challenging to extract
experimentally due to limitations in signal-to-noise ratio and
frame rate of our movies.45–47 Hence, a heuristic approach
developed by Cush & Russo is employed,8 for which the

Fig. 2 Isotropic and anisotropic diffusion coefficients determined by
differential dynamic microscopy (DDM) and single particle tracking (SPT)
measured for the full range of M13KE virus concentrations and organisa-
tions: isotropic (Iso), (chiral) nematic (N*) and smectic-A (SmA) phases. The
first order phase transitions are indicated by grey areas. For DDM, green
and red symbols correspond to samples doped with green and red-
labelled fluorescent viruses, respectively.

Fig. 3 Diffusion coefficients normalised by the one at infinite dilution
(D0) measured in the isotropic liquid phase of virus suspensions by DDM
for both semi-flexible M13KE (full blue circle) and stiff Y21M (black open
squares) viral rods. The blue and black lines are corresponding single
exponential fits over the full range of isotropic phase.8 The transition
between the dilute and the semi-dilute regime in the isotropic liquid
phase is shown to be significantly above the overlap concentration
C* indicated by a black dashed line. The isotropic-to-nematic transition
given by CI–N p 1/(dL2) according to Onsager theory41 is shown by a red
dotted line for both viruses. Error bars correspond to the normalised
standard deviations obtained from fitting the different movies.
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exponential fit properly accounts for many sets of experimental
data. This approach effectively describes the dynamics within
the isotropic liquid phase, for which the diffusion coefficient
can be reasonably fit to an exponential decay, reaching D/D0 =
0.13 for the highest concentrations before the isotropic-to-
nematic (I–N) transition (Fig. 3).

This significant decrease of diffusivity below D/D0 = 0.5 has
previously been assumed to stem either from the finite rod
diameter44 or from the semi-flexibility8 encountered in many
experimental systems: a finite rod diameter reduces diffusivity
by promoting head-on collisions within the tubes, whereas rod
semi-flexibility promotes more entanglement in the semi-dilute
regime. To gain some insight on the relative importance of
these two contributions, we leverage the versatility of filamen-
tous bacteriophages to work with a mutant, Y21M, which is
a stiff rod having a higher persistence length Lp/L B 11
(see Methods). The diffusion coefficients of Y21M suspensions
are shown in Fig. 3 for the full range of the isotropic liquid
phase. The data for these stiffer viruses show a similar trend
to the semi-flexible rods. However there is a reduction in the
transition concentration associated with the tube formation as
well as a slight increase in the D/D0 near the I–N transition. The
value of D/D0 = 0.24 of the stiffer viruses is still significantly
lower than the predicted 0.5, highlighting that the finite rod
diameter plays a key role in reducing diffusivity.43,44 Note that
the further reduction to D/D0 = 0.13 observed for the semi-
flexible viruses may arise from rod flexibility, even though it can
be also rationalised in terms of head-on collisions, as flexibility
leads to an increased effective diameter due to thermal fluctua-
tions of the virus backbone.31 The observation that the semi-
dilute regime is initiated at lower concentrations for stiff rods is
consistent with the entropic role played by rod flexibility for
disentanglement from the tubes. Overall, besides the primary
impact of finite rod diameter, we show using DDM that rod
flexibility significantly influences the decrease of translational
diffusion in the semi-dilute regime of the isotropic phase of
rod-like virus suspensions.

3.3 Nematic phase

By increasing further the concentration, the virus suspensions
self-organise into the first liquid crystalline state, i.e. the chiral
nematic phase, where rods exhibit long-range orientational
order. As the cholesteric periodicity in the range of 20 to
200 mm far exceeds the typical length scales associated with the
system,48,49 our rod suspension can be considered locally as a
nematic phase from the point of view of the dynamics. The
anisotropy of the mesophase results in an anisotropy of its
dynamics with two diffusion coefficients D8 and D> in the
direction parallel and perpendicular to the long rod axis, respec-
tively.10 Single particle tracking shows that, in the nematic phase,
the motion remains nearly diffusive (Fig. S6, ESI†), with the
parallel diffusion prevailing with respect to the perpendicular
one, as D8/D> C 10.10,23 Such results are obtained by fitting the
MSD with a linear function of time with a constant offset –
independent of concentration – introduced to account for the
finite instrumental resolution (see ESI†). Note that a more

sensitive analysis for probing the instantaneous dynamics of such
systems is to study the time evolution of the probability density
function, or self-Van Hove functions, as shown recently.24 DDM
analysis confirms these findings, with DICF’s well fitted using a
simple diffusive model (eqn (4)) and the decay rates G(q) showing
the expected q2 scaling in both directions (Fig. S3B, ESI†).
Stretched exponential fits (eqn (5)) return stretch exponents close
to 1, reconfirming that the motion is still very close to a diffusive
regime. DDM and SPT results also agree well quantitatively as
seen from the extracted long-time diffusion coefficients shown in
Fig. 2. However, a slight systematic deviation, that is lower D8 and
higher D>, is found for diffusion coefficients obtained by DDM as
compared to SPT. This can be rationalised by the fact that finite
angular sectors of 151 width (see Methods) are used for DDM
analysis. More importantly, DDM is intrinsically a statistically
average method which quantifies the dynamics with respect to a
fixed direction within the imaged region of interest. Unlike SPT,
where the analysis is performed within the frame of individual
rods, our DDM analysis does not account for director fluctuations.

3.4 Smectic-A phase

By further increasing the virus concentration, the smectic-A
phase appears and this lamellar organisation can be consid-
ered as a one-dimensional stack of liquid slabs.50 In this phase,
the rod-like viruses behave mostly as Brownian particles in a
one-dimensional potential.22,32,35 This results in a self-
diffusion taking place preferentially in the direction normal
to the smectic layers, and occurring by quasi-quantised steps of
one rod length as evidenced by SPT.22,23 The long-time diffu-
sion coefficient can be readily extracted from the MSD derived
from SPT data. The MSDs also display clear signatures of sub-
diffusive motion at short delay times t in the parallel direction,
whereas the motion in perpendicular direction still appears to
be purely diffusive (Fig. S6, ESI†). DDM analysis of the same
data can also extract long-time diffusion coefficients, which are
in good agreement with the tracking data (Fig. 2 and Fig. S3C,
ESI†). However, although there is some indication that the
parallel motion is better fitted by the stretched model (eqn (5)),
the DDM data is too noisy to reliably detect any deviation from
purely diffusive dynamics.

We therefore prepared an additional sample in the smectic-
A phase with a higher fraction of labelled viral particles, for
which very long movies up to 22 min at 20 fps have been
recorded (see Methods). The vastly increased DDM signal levels
(Fig. S7, ESI†) combined with improved statistics make it
possible to reliably quantify the dynamics across a much larger
q-range using stretched exponential fitting (Fig. 4 and Fig. S4,
ESI†). In the perpendicular direction the decay rate G scales
with q2 and the stretch exponents remains very close to 1 across
the whole q range. This confirms that the motion is purely
diffusive, in very good agreement with SPT analysis. But in the
parallel direction two regimes can now be distinguished: (1) at
low q (i.e. q o 2 mm�1) the dynamics is diffusive with b8 E 1
and G8 p q2 (Fig. 4). This diffusive regime can be interpreted as
the long time behaviour of a 1D random walker, for which
the unit displacement or step is the hopping event of a virus
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between two adjacent layers. Probing this regime requires to
observe multiple jump events to fully capture the underlying
dynamics at long times. It is worth mentioning that this
provides the first experimental evidence of this very long time
diffusive behaviour in the smectic phase, which is challenging
to detect with SPT as most particles become untrackable over
extended periods of time. We estimate the long-time diffusion
coefficient as shown in Fig. 2 from G for q r 2 mm�1 (where
bZ 0.93). (2) At larger wavevectors (q \ 3 mm�1) the significant
drop in stretch exponent (b8 t 0.8; Fig. 4A) indicates more
complex dynamics such as the presence of multiple character-
istic time scales.15 This is reinforced by the non-monotonic
behaviour in decay rate G8, indicating that there are at least two
different processes with different q-scaling. Closer inspection of
the DICF curves indeed reveals the emergence of a separate
slower decay component as q approaches the value associated
with the smectic layer thickness 2p/Llayer E 6.3 mm�1. Scaling
the delay time by q2 as shown in Fig. 4C helps to highlight these
two separate time scales and suggests that the faster initial
decay is diffusive. The slower second decay stems from the
transient trapping of the particles within the smectic layers,
with the decay rate G decreasing as the associated length scales
c = 2p/q approach the layer thickness Llayer. Although it is
possible to extract two distinct decay rates by fitting the DICF
for q \ 4 mm�1 with a more complex fit (Fig. S4 and S5, ESI†),
quantitative interpretation would require a theoretical expres-
sion of the intermediate scattering function and faster frame
rates to allow better characterisation at short delay time. This is
beyond the scope of the current manuscript. Also note that the
minimum in the form factor (see Section 3.5) makes it difficult
for DDM to accurately probe the dynamics very close to the
layer length scale, as Llayer C L.

3.5 Form factor

The bodies of our tracer viruses are uniformly labelled with
dyes, making their rod-like shape clearly visible in our high
magnification movies (Fig. 1). The form factor of our viruses
should therefore be well described by that of a cylindrical
particle of length L and radius r, given by51

Pðq;fÞ ¼ 2
J1ðqr sinfÞ
qr sinf

� sinðqðL=2Þ cosfÞ
qðL=2Þ cosf ; (8)

where f is the angle between q and the cylinder axis and J1 the
Bessel function of the first kind. For the direction parallel to the

main rod axis, f = 0 and eqn (8) reduces to Pðq;f ¼ 0Þ /

sinðqðL=2ÞÞ
qðL=2Þ whereas in the perpendicular direction f = 901, this

yields to P q;f ¼ 90
�� �
/ 2

J1ðqrÞ
qr

, which for a slender rod

stays E1 across the accessible q range. This means that DDM
amplitude signal in the perpendicular direction (as shown in
Fig. S7, ESI†) mostly accounts for the optical transfer function
of our microscope (see eqn (7)), and can then be used to extract
the square of the form factor of our particle in the parallel
direction, as described in detail in ESI† and shown in Fig. 5.

Fig. 4 (A) Stretch exponential fit parameters b using eqn (5) for
smectic-A sample with red fluorescent dyes optimised for DDM analy-
sis. Full and open symbols correspond to the directions parallel and
perpendicular to the director, respectively. For parallel motion, a diffu-
sive behaviour is reached at long time, corresponding to q o 2 mm�1.
The vertical dashed line indicates the first minimum of the form factor
(see main text and Fig. 5). (B) The anisotropic decay rates G(q2) are used
to determine the long-time diffusion coefficients (see eqn (6)) by linear
fits within the q-ranges where b Z 0.93, as indicated by solid lines.
Resulting D8,> are shown in Fig. 2 by the two red symbols. (C) Normal-
ised DICF (open symbols) for parallel motion reveal two distinct pro-
cesses for q 4 4 mm�1 as shown by double-decay fits (solid lines) for the
two highest q shown here (see Fig. S5 for fit values and Fig. S4
for perpendicular motion, ESI†). For q o 4 mm�1, a stretched exponential
fit properly accounts for the single dynamic process in the smectic
phase.
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This agrees very well with the expected q-dependence, and
the position of the minima can be used to provide an indepen-
dent estimate of the virus length L (Fig. 5). Note that this strong
asymmetry of the virus form factor makes the interpretation of
DDM data for higher q-values more difficult. For small wave-
numbers (q t 2 mm�1) the form factor stays close to unity and
therefore the contributions to the DDM signal are essentially
independent of the direction of motion relative to the particle
axis. But for higher q values the contribution from motion
parallel to the virus axis drops quickly as it approaches qL = 2p/L.
In the present case, small perpendicular components are still
detected due to the finite sector size and ultimately dominates the
dynamic signal near the form factor minima.

This constitutes an intrinsic difficulty to reveal the dynamics
of rod-shaped particles in the direction of their long axis for any
reciprocal space method, such as DDM and DLS for instance,
involving the form factor of a cylinder. In case of DDM this
could be overcome by only labelling the virus centre of mass
with dyes, thereby removing the anisotropy of the form factor.

4 Conclusions

In this study, we have investigated the dynamics of self-
assembled suspensions of rod-like fd virus colloids across a
wide range of concentrations using single particle tracking
(SPT) and differential dynamic microscopy (DDM). Both tech-
niques have provided valuable insights into the anisotropic
diffusion of the viral rods in various self-assembled states,
including dilute and dense isotropic liquids, nematic and
smectic phases.

SPT, a well-established technique, has proved to be a power-
ful and accurate tool to directly measure the anisotropy of
diffusion coefficients, particularly in the nematic and smectic
phases. SPT is able to capture detailed information about the

dynamic behaviour in the direct space, as the hopping-type
diffusion in the smectic phase. However, obtaining high
statistics with SPT can be challenging. In contrast, DDM, an
ensemble-averaged technique, is relatively fast and efficient
to deliver a rapid characterisation of the sample-averaged
dynamics. While DDM results have shown good quantitative
agreement with diffusion coefficients extracted from SPT across
all concentrations, it struggles to account for local variations
within the analysed area. This limitation leads to small sys-
tematic deviations for nematic and smectic samples compared
to SPT, whose analysis can be advantageously performed in the
frame of the particle. A major strength of DDM lies in its ability
to achieve good statistics by simultaneously imaging many
tracer particles over extended time periods. In anisotropic
liquid crystalline phases, this advantage can be exploited by
increasing the tracer concentration, as successfully demonstrated
here for a smectic sample. By analysing the q-dependence of the
DDM signal, we have been able to reveal a diffusive regime at long
times in the smectic phase for motion parallel to the normal of
the smectic layers. This finding is challenging to access with SPT
due to limitations in tracking particles over extended periods. For
isotropic samples in the semi-dilute regime, we have explicitly
demonstrated that the decrease of the diffusivity in the semi-
dilute regime depends on the particle flexibility, beyond the
primary influence of finite particle diameter. DDM has been
shown to be an efficient method in this semi-dilute regime,
which, for more detailed studies, could be further exploited by
using much larger fields of view, lower magnification imaging and
more advanced data processing47 to potentially provide insights
into rotational diffusion.

Overall, our study emphasises the importance of consider-
ing both the underlying physics of the system and the limita-
tions of each technique to gain a comprehensive understanding
of the complex dynamics within anisotropic colloidal systems.
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