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Elucidating chirality transfer in liquid 
crystals of viruses

Eric Grelet    1  & Maxime M. C. Tortora    2,3 

Chirality is ubiquitous in nature across all length scales, with major 
implications spanning fields from biology, chemistry and physics to 
materials science. How chirality propagates from nanoscale building blocks 
to meso- and macroscopic helical structures remains an open issue. Here, 
working with a canonical system of filamentous viruses, we demonstrate 
that their self-assembly into chiral liquid crystal phases quantitatively 
results from the interplay between two main mechanisms of chirality 
transfer: electrostatic interactions from the helical charge patterns on the 
virus surface, and fluctuation-based helical deformations leading to viral 
backbone helicity. Our experimental and theoretical approach provides a 
comprehensive framework for deciphering how chirality is hierarchically 
and quantitatively propagated across spatial scales. Our work highlights 
the ways in which supramolecular helicity may arise from subtle chiral 
contributions of opposite handedness that act either cooperatively or 
competitively, thus accounting for the multiplicity of chiral behaviours 
observed for nearly identical molecular systems.

Understanding and controlling the propagation of chirality across 
length scales, from chiral molecular primary units such as molecules 
possessing asymmetric carbons to ordered helical superstructures 
and chiral bulk assemblies, is of paramount importance in multiple 
contexts encompassing the fields of biology, chemistry and physics 
as well as nanotechnology and materials science1–6. Among large-scale 
chiral patterns, the liquid crystalline organization known as the ‘cho-
lesteric phase’ can be arguably considered as the quintessential helical 
assembly (Extended Data Fig. 1). Beyond widespread technological 
applications ranging from the display industry to smart windows7,8, 
cholesteric structures are also ubiquitously found in biological mat-
ter—both in vivo, as found in some plant tissues and in the cuticles of 
arthropods such as beetles and crabs9, and also in vitro in solutions of 
cholesterol derivatives10, nucleic acids11–13, viruses14–16, amyloid fibrils17, 
chitin18, cellulose nanocrystals19–21 and so on.

Despite considerable efforts over past decades13,15,16,21–27, the mech-
anisms responsible for the hierarchical propagation of chirality—that is, 
the causal relationship between the microscopic properties of molecu-
lar building blocks and their emergent macroscopic structure—remain 

largely unresolved. The underlying difficulty is that chiral interactions 
are intrinsically weak. This can be illustrated by the fact that the pre-
ferred mutual twist angle between two adjacent particles found in 
standard cholesteric arrangements is typically a fraction of a degree. 
This should be compared to the average angle by which the rods locally 
fluctuate in such liquid crystalline phases, which is typically of the order 
of tens of degrees, two orders of magnitude larger28. Consequently, any 
model of the system that aims to predict the hierarchical transfer of 
chirality from the molecular level to larger helical structures requires a 
highly accurate description of the chiral interactions in order to reliably 
account for the magnitude and sense of the resulting helical periodicity.

In this work we study the cholesteric liquid crystalline phase 
formed by aqueous suspensions of filamentous viruses both experi-
mentally and theoretically. These viruses, known as bacteriophages 
for their ability to infect bacteria, are widely used as a model system 
in genetic engineering due to their ease of modification29–32; in soft 
condensed matter as monodisperse rod-like model particles28,33,34; 
and in nanotechnology as versatile and functionalizable colloidal 
templates31,35,36. Here we demonstrate that their self-organization into 
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theoretical approaches have been developed at a coarse-grained level 
aiming to both capture the key physical mechanisms and keep the 
calculations tractable. As a consequence, their limited accuracy may 
be insufficient to fully account for the complexity of real experimen-
tal systems and generally does not provide a quantitative agreement 
between model predictions and experimental measurements16,23.

Straley was the first to propose a microscopic theory of the cho-
lesteric phase based on an excluded-volume interaction by consider-
ing rod-like particles exhibiting additional chiral threads similar to 
screws22. The steric hindrance between two screw-like rods is minimal 
not when they are parallel to each other, but when they approach each 
other at a specific angle at which the chiral grooves can interpenetrate 
(Extended Data Fig. 3). Depending on the thread angle φ, the helical 
twist resulting from the optimal packing of right-handed screws may 
be either right-handed if φ < 45° or left-handed if φ > 45°. This simple 
example illustrates the non-trivial relationship between the handed-
ness of microscopic building blocks and that of their macroscopic 
helical assemblies, which can thus yield either homo-chiral (φ < 45°) or 
hetero-chiral (φ > 45°) structures depending on their detailed molecu-
lar morphology (Extended Data Fig. 3). Such steric-based chiral interac-
tions have already been observed in experimental systems, for instance 
between helical nanofilaments of the B4 liquid crystalline phase42. As 
most biopolymers display helical charge patterns, models including 
electrostatic interactions have also been developed but have usually 
been limited to coarse-grained descriptions16,40,41.

Here we go beyond coarse-grained approaches and introduce an 
electrostatic model built at the atomistic level and based on an all-atom 
representation of the ground-state conformation of the virus, in the 
absence of thermal fluctuations (Fig. 1). Our model provides an 
atomic-level description of the virion pair interaction energy Uinter that 
explicitly accounts for the screened electrostatic, steric and van der 
Waals forces involving each of the ~3 × 106 atoms within the virus capsid 
(Fig. 2). Potential parameters are set per amino acid and atom type 
using an iteration of the GROMOS force field optimized to reproduce 

the cholesteric liquid crystalline state quantitatively results from the 
interplay between three different contributions of chirality transfer: 
(1) steric repulsion between the screw-shaped capsids arising from 
the helical arrangement of coat proteins on the virus surface; (2) elec-
trostatic interactions between the helical charge pattern on the virus 
surface; and (3) long-wavelength chiral deformations stemming from 
the virus flexibility and leading to a coherent supramolecular helical 
morphology of the virus backbone (Fig. 1).

These sources of chirality transfer are independently probed by 
tuning the ionic environment and by the chemical functionalization of 
two specific virus strains that form chiral nematic phases with opposite 
handednesses. They are confirmed by numerical models including a 
detailed atomistic description of the interparticle force field, account-
ing quantitatively for the full set of our experimental results.

Results and discussion
Filamentous bacteriophages of the Ff family are micrometre-long 
semi-flexible particles that are primarily composed of a single-stranded 
DNA around which about 3,000 copies of the major coat protein p8 are 
assembled in an overlapping, interdigitated helical structure (Fig. 1). 
Two closely related strains are used, M13 and Y21M, which are struc-
turally and biologically very similar30 and which bear a net negative 
charge in physiological conditions (Fig. 2). The primary difference, 
a single amino acid mutation occurring in the central region of the 
50-amino-acid-long coat protein p8 (that is, at position 21), slightly 
alters the symmetry of the phage capsid (Methods), as shown by 
Marvin et al. with high-resolution X-ray diffraction30,32. The resulting 
three-dimensional atomistic structure of the M13 and Y21M virus cap-
sids are deposited in the Protein Data Bank (PDB) under entry numbers 
1IFI and 2C0W, respectively.

Both capsids display a main right-handed groove (Fig. 1) stem-
ming from the helicoidal wrapping of the major coat proteins p8, 
whose thread angles differ: φ = 39.85° for M13 and 43.15° for Y21M. A 
secondary thread can be identified, which has a right-handed helical 
symmetry for the M13 capsid (ψ = 5.15°, 1IFI model) but is achiral for 
Y21M due to its exact two-fold screw symmetry (ψ = 0°, 2C0W model). 
These subtle structural differences between the two viruses result in a 
large change in their stiffness (Methods): the M13 strain is semi-flexible 
with a persistence length Lp over contour length Lc ratio of Lp/Lc ≈ 3, 
whereas Y21M is nearly rigid with Lp/Lc ≈ 11 (Fig. 2)37. When dispersed in 
buffer solutions of controlled pH and ionic strength IS (Methods), both 
rod-shaped virions exhibit the same liquid crystal phase sequence14,34 
and self-organize into the cholesteric phase where the helical twist 
occurs perpendicular to the average particle orientation as shown in 
Extended Data Fig. 1. The cholesteric ordering is characterized by its 
helical periodicity, or pitch P, which is defined as positive (negative) 
for right- (left-) handedness. It is worth mentioning that, despite the 
similarity in the structure of the phages, their cholesteric phases have 
opposite handednesses: left-handed for M13 and right-handed for 
Y21M (Extended Data Fig. 1)16,37. By varying the ionic conditions, the 
cholesteric pitch ∣P∣ of both viral mutants increases with increasing the 
ionic strength IS (refs. 14,16; Extended Data Fig. 2) and as pH decreases 
towards the isoelectric point of the virus, pIE (Figs. 2 and 3). This sensi-
tivity of the cholesteric pitch to modulations of either the range or the 
intensity of electrostatic interactions shows their major contributions 
in the cholesteric assembly.

Different mechanisms have been suggested to predict the value 
and sense of the cholesteric pitch from the molecular features of the 
chiral constituents. They mostly rely on two main classes of chiral inter-
molecular potentials: steric interactions based on hardcore repulsion 
at different length scales, ranging from local helical threads decorating 
rod-like particles to full helical shapes such as hard helices22,26,38,39, and 
electrostatic interactions resulting from the helical charge distribu-
tions carried by the particles16,25,40, which have been further generalized 
to also include chiral dispersion forces24,41. However, most of these 
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Fig. 1 | Structural chirality of filamentous viruses at various hierarchical 
scales, ranging from the asymmetry of Cα atoms of the amino acids of the 
major coat proteins p8, to the α-helical structure of these proteins and 
their helical arrangement on the virion surface. At the micrometre scale, 
the flexibility of the virus suggests the existence of suprahelical backbone 
deformation modes of radius r and internal helical pitch h, stemming from 
long-wavelength chiral fluctuations of the whole virus shape with end-to-end 
distance L. The atomistic models of both M13 and Y21M filamentous viruses are 
respectively derived from the 1IFI and 2C0W capsid structures30,32 and deposited 
in the PDB. A primary right-handed thread angle resulting from the main groove 
formed by the major coat proteins p8 and indicated by black lines is found to 
be φ < 45° for both mutants. A secondary groove and associated thread can be 
identified (black long-dashed lines) that has a right-handed helical symmetry for 
the M13 capsid (ψ = 5.15°, 1IFI model, as shown in the representation here) but is 
achiral for Y21M (ψ = 0°, 2C0W model). Different colours are used to highlight a 
few major coat proteins p8 and the associated symmetries of the capsid.
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the free enthalpy of solvation of biomolecular compounds, which 
includes a dependence on ionic content in the form of implicit-solvent 
electrostatic interactions (Methods)43. The atomistic representations 
of the Y21M and M13 capsids are respectively reconstructed from their 
2C0W and 1IFI three-dimensional structures. The corresponding pro-
tonation states and charge distributions are inferred at various pH 
conditions using standard protein structure preparation software 
(Fig. 2 and Methods). As thermal fluctuations of the virion backbone 
are neglected, the electrostatic model is effectively developed in the 
high stiffness limit of the filamentous virus (Lp → ∞). The cholesteric 
pitch P and twist elastic modulus K22 are then obtained from the mini-
mization of the associated free energy ℱ  (Methods and Supplementary 
Sections I and II), and the results are shown in Fig. 3. An excellent quan-
titative agreement is found between theory and experiments for the 
Y21M virion, at both low and high pH values. The electrostatic model 
captures not only the sense and magnitude of the Y21M cholesteric 
helicity, but also its unwinding when the virus surface charge decreases. 
For the highest virus concentrations, the model slightly underestimates 
the resulting helicity of the system (Fig. 3). This likely arises from the 
second virial approximation underlying our model, which is expected 
to be increasingly inaccurate at higher virus volume fractions 
(Methods).

However, the electrostatic model does not account for the chiral 
phase behaviour of the M13 phage (Supplementary Section III), for 
which it strongly underestimates the chirality of the system. Thus, 
although the electrostatic model succeeds in capturing the experi-
mentally observed cholesteric assembly of Y21M virions, another 
mechanism of chirality transfer has to be invoked in the case of M13 
suspensions.

To further investigate the nature of the chiral interactions 
between viruses, a shell of neutral hydrophilic polymers (polyethylene 
glycol (PEG); Methods) is covalently grafted on both virion surfaces 
(Extended Data Fig. 4). The phase behaviour of the polymer-coated 

viruses (M13-PEG and Y21M-PEG) becomes independent of ionic 
strength at a high salt concentration44. In contrast to pristine viruses, 
whose colloidal stability relies on electrostatic repulsion and who 
therefore aggregate at the isoelectric point pIE, PEGylated viruses 
are sterically stabilized and can then be studied at varying pH values 
(Extended Data Fig. 4). This includes the range close to the isoelectric 
point pIE, where no net electric charge remains on the virus surface 
and therefore the electrostatic interactions vanish. Interestingly, 
in these conditions, a left-handed cholesteric phase still persists 
for the M13-PEG system at pIE, whereas Y21M-PEG suspensions  
exhibit a nematic phase as expected in the absence of electrostatic 
interactions (Fig. 4). This implies that another general mechanism 
driving the chirality transfer for the M13 and M13-PEG phages needs 
to be considered. This independence from the electrostatic inter-
actions leads to a cholesteric pitch that does not depend on ionic  
strength, as shown in Fig. 4b. Furthermore, the cholesteric pitch 
values found for M13 and M13-PEG are nearly identical when the 
colloidal stability is preserved (that is, at pH 8; Fig. 4a) and the virus 
concentration is rescaled by the binodal concentration associated 
with the stability limit of the isotropic phase, Ciso. This indicates that 
the mechanism of chirality transfer for M13 and M13-PEG to the cho-
lesteric ordering is not sensitive to the structural details and sym-
metries of the phage surface, and occurs at a much higher length 
scale than the atomic level. A key difference between the two virus 
strains is their stiffness: M13 is semi-flexible whereas Y21M is a stiff 
colloidal rod (Methods). Together, these observations suggest a 
mechanism of chirality transfer based on long-wavelength helical 
fluctuations of the virus backbone, which we will henceforth refer 
to as the ‘suprahelix model’15,27.

In detail, the suprahelix model accounts for the ability of the virion 
flexibility to promote long-wavelength chiral deformation modes due 
to thermal fluctuations, leading to a coherent helical morphology 
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Fig. 2 | Atomistic representation of the semi-flexible M13 and stiff Y21M 
virions and pH dependence of their charge distribution calculated using 
Adaptive Poisson-Boltzmann Solver (APBS). The electrostatic surface 
potential of both viruses, rendered using the PyMOL software’s APBS plugin48, is 
shown to vary from negative (red) to positive (blue) by decreasing the pH below 
the virus isoelectric point pIE. The two main threads identified on the virus capsid 
(as defined in Fig. 1) are indicated by continuous and long-dashed black lines, 
respectively. kB, Boltzmann constant; T, temperature; e, electron charge.
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Fig. 3 | Cholesteric to nematic crossover by decreasing charge fully accounted 
for by the electrostatic model in Y21M virus suspensions. At low virus charge, 
that is, at pH 5 close to pIE (filled blue symbols), the cholesteric pitch unwinds 
by decreasing virus concentration until reaching the nematic phase (2π/P = 0), 
as illustrated by the two polarization micrographs showing the absence in the 
nematic (N, left inset) and the presence in the cholesteric (N*, right inset) of 
fingerprints (scale bars, 250 μm). By contrast, for highly charged viral rods at pH 
8 (filled red symbols), a cholesteric phase of smaller pitch ∣P∣ is observed across 
the whole liquid crystalline range. For both conditions of pH, the ionic strength 
is fixed at IS = 110 mM. The electrostatic model (open symbols) quantitatively 
accounts for the experimental results of stiff Y21M in the dilute range of the 
cholesteric organization both at low and high charges (pH 5 and 8, respectively). 
Error bars are determined as detailed in Methods.
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spanning the entire virus shape15. While little to no primary proof of 
such a helical conformation has been reported35, we provide here indi-
rect experimental evidence for the formation of helical supramolecular 
self-assemblies from cholesteric suspensions of filamentous viruses 
under depletion interactions (Extended Data Fig. 5). These helical 
structures are reminiscent of the helical morphology assumed to arise 
from the backbone fluctuations of individual viruses in the suprahe-
lix model and therefore strongly support this hypothesis. As the full 
mechanical modelling of filamentous phages over experimentally 
relevant timescales remains computationally inaccessible to standard 
atomistic simulations, we approximate these helical deformation 
modes by a mean effective backbone conformation, described by a 
hard helix of radius r and internal pitch h (Fig. 1). In this framework, 
h ≫ Lc indicates that the internal helical periodicity may far exceed 
the full length of an individual virus, giving rise to a weakly curved, 
‘suprahelical’ higher-order shape38.

Although the link between ground-state and fluctuation-induced 
chirality is generally non-trivial27, the left-handed phases displayed by 
the more flexible M13 phages (Extended Data Fig. 1) suggest that the 
corresponding backbone deformations should be predominantly 
right-handed, in agreement with simple geometric arguments govern-
ing the self-assembly of weakly curled helices (Fig. 1 and Extended Data 
Fig. 3). Based on the ‘tube’ model of polymer deflection, Supplementary 
Section IV shows that the resulting suprahelical conformation may 
then be expressed in terms of the internal pitch h as the sole adjustable 
parameter for a given virion persistence length Lp. The cholesteric pitch 
P and the twist elastic constants K22 are also obtained for this model 
from the minimization of the free energy ℱ  associated with these 
weakly curled suprahelices interacting pairwise through hardcore 
repulsion. The results are shown in Figs. 4b and 5, where the internal 
pitch h of the suprahelical conformation has been set such that 
h = 2.8Lp. The PEGylation of viruses is limited to about 10% of the capsid 
proteins, so that the grafted polymers may change only the surface 
properties of the viruses and do not alter their internal structures 
(Methods), leading to the same persistence length—and therefore 
similar helical deformation amplitudes—for pristine and PEGylated 
virions. The difference between the persistence lengths of the M13 and 
Y21M phages is then sufficient to account, with h = 2.8Lp, for the mag-
nitude and sign of the M13-PEG cholesteric pitch, as well as for the 
nematic-like behaviour (diverging pitch P) of the Y21M-PEG suspen-
sions (Fig. 4). This mechanism of chirality transfer, based on 
long-wavelength helical deformations of the whole virus shape, relies 
mostly on excluded-volume interactions and may be shown, using 
scaling arguments, to depend solely on the ratio Φ/Φiso ≡ Cvirus/Ciso for 
a fixed particle length Lc with Φ the volume fraction of virus suspensions 
and where iso indicating the isotropic binodal point (Supplementary 
Section V).

In light of the vanishingly small values of 2π/P associated with the 
electrostatic model of ground-state M13 conformations (Supplemen-
tary Section III), let us postulate that the effects of the detailed chiral 
surface charge distribution on the cholesteric assembly of thermalized 
viruses may be neglected. We may then simply consider the viruses as 
uniformly charged (helical) rods, whose liquid crystalline behaviour 
can be remapped to that of a hard-body system with a charge- and 
ionic-strength-dependent effective diameter deff > d, where d is the 
bare rod diameter (ref. 45). Renormalizing the M13 virus concentrations 
by the corresponding binodal values Ciso at different ionic strengths 
(Extended Data Fig. 2), the inverse cholesteric pitch P of both charged 
M13 and PEGylated M13-PEG is indeed found to collapse onto a unique 
master curve (Fig. 5), quantitatively accounted for by the suprahe-
lix model with h = 2.8Lp. Thus, contrary to the case of Y21M viruses 
where the local symmetry and details of the surface charge distribu-
tion matter, the existence of this master curve for M13 viruses proves 
the irrelevance of these local features for chirality propagation in the 
cholesteric phase, as quantitatively evidenced by the chiral potential 

of mean force (Supplementary Section VI). Furthermore, this master 
curve demonstrates that the origin of their chirality instead lies in 
long-wavelength helicoidal deformation modes, which are nearly not 
affected by PEGylation or changes in ionic conditions.
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Fig. 4 | Cholesteric ordering in sterically stabilized semi-flexible viruses and 
suprahelix model. a, pH dependence of the inverse of the cholesteric pitch P in 
M13 (concentration CM13 = 42 mg ml–1) and M13-PEG (CM13-PEG = 10.5 mg ml–1) 
suspensions at IS = 110 mM. Each concentration is chosen in the fully liquid 
crystalline regime such that Cvirus/Ciso ≈ 2, where Ciso is the isotropic binodal 
concentration. As the pH is decreased below the isoelectric point pIE (red dotted 
area), colloidal aggregation is observed in pristine M13 suspensions (red 
symbols). By contrast, sterically stabilized semi-flexible M13-PEG virions (filled 
black squares) still exhibit a left-handed cholesteric phase at, and below, the 
isoelectric point pIE. b, Influence of viral rod flexibility on the inverse cholesteric 
pitch P in PEGylated virus suspensions. The semi-flexible M13-PEG system with a 
persistence length LM13

p ≈ 3Lc (with Lc the virion contour length, and 

Lc ≈ LM13
c ≈ LY21Mc ) exhibits a cholesteric phase whose pitch (filled circles) is 

mostly independent of ionic strength IS at a high enough salt concentration, 

whereas the stiff Y21M-PEG (LY21Mp ≈ 11Lc) has a nematic-like behaviour (square 

symbols) without any observable chirality propagation. Our model of 
suprahelical backbone deformations with an internal pitch of h = 2.8Lp, as 
described in the main text, is able to account quantitatively for the chiral 
behaviour of stiff and semi-flexible PEGylated viruses. Error bars are determined 
as detailed in Methods. Insets are schematic representations of stiff (straight) 
and flexible virus mutants and of their effective electrostatic or steric (with 
grafted PEG polymers depicted in red) diameter.
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Conclusion and outlook
We have extensively investigated the origin of chirality in liquid 
crystals of viruses—a question that has largely eluded scientists for 
more than two decades15. Through the fine tuning of experimental 
assembly conditions, combined with the development of quantita-
tive atomistic models of the virus capsid, we are able to elucidate the 
mechanistic basis of chirality transfer for two distinct phages, M13 
and Y21M, that, despite their high structural similarity, exhibit cho-
lesteric phases of opposite handedness. The exquisite level of control 
over the molecular structure of the particles provided by these virus 
systems enables us to demonstrate that their surprising diversity of 
cholesteric behaviours stems from a subtle competition between 
thermal fluctuations, steric repulsion and electrostatic forces. For  
stiff Y21M virus strains, whose high bending rigidity largely sup-
presses conformational fluctuations away from a straight, rod-like 
backbone shape, we find that the cholesteric behaviour may be quanti-
tatively attributed to local electrostatic interactions, which are highly  
sensitive to both ionic content and the detailed atomic symmetries 
of the capsids. This conclusion qualitatively mirrors the findings of 
previous studies of various biopolymers including chitin46 and cel-
lulose nanocrystals20. However, in contrast to these broadly studied 
colloidal cholesteric systems, we report that the phase chirality of 
Y21M solutions decreases by reducing the strength of electrostatic 
interactions through the modulation of the pH and ionic environ-
ment. We attribute this behaviour to the well-defined linear mor-
phology of the virus backbone, whose molecular chirality originates  
primarily from the subtle helical distribution of surface charges 
around the symmetry axes of the capsid (Fig. 2), and whose effects 
may be increasingly screened by reducing the range and magnitude of 
the associated electrostatic forces (Supplementary Section VI). This 
ideal rod-like architecture differs from the size and shape polydisper-
sity characterizing cholesteric assemblies of other bio-colloids such 

as chitin and cellulose, whose detailed atomistic structures remain 
challenging to resolve at the molecular level, as discussed further in 
the following.

Conversely, for the more flexible M13 variant, our results reveal 
that phase chirality instead proceeds from weak, fluctuation-induced 
suprahelical deformations of the virus backbone, and it is chiefly 
driven by steric, rather than electrostatic, interactions. This conclu-
sion mirrors recent findings in cholesteric systems of DNA origamis27 
and is evidenced by the collapse of the cholesteric pitches measured 
in various experimental conditions onto a unique master function of 
the rescaled concentration C/Ciso (Fig. 5). In this context, the apparent 
unwinding of the cholesteric pitch with increasing ionic strengths at 
fixed (absolute) concentration C may be quantitatively ascribed to 
the variations of the virion effective diameter deff (in the limit where 
the Debye screening length κ−1 ≪ Lc), and is largely independent of the 
specific capsid surface charge patterns (Supplementary Section V). 
Therefore, we emphasize that in order to rigorously assess the role 
of electrostatic interactions on chiral nematic ordering, one should 
carefully consider the variations of the cholesteric pitch at different 
pH and ionic conditions as a function of the reduced density C/Ciso, so 
as to accurately distinguish the potential contributions attributable 
to the chiral charge distribution from those arising from the generic 
effects of electrostatic forces on the nematic stability range. This 
task is likely arduous in cholesteric phases of fibrous biomaterials 
lacking a well-resolved, monodisperse morphology, for which the 
determination of Ciso is necessarily ambiguous—thus hindering the 
unequivocal experimental characterization of these distinct steric 
and electrostatic chirality transfer mechanisms in such cases. How-
ever, another experimental signature of the steric-based suprahelix 
model lies in the tightening of the cholesteric pitch with increasing 
particle contour length Lc (Supplementary Section VII), which con-
tradicts classical theoretical predictions for screw-like particles47 and 
rod-shaped particles featuring helical surface charges40. Interestingly, 
a similar behaviour has been recently reported in fractionated cel-
lulose20 as well as in amyloid fibril suspensions17, which suggests that 
such excluded-volume-driven modes of chirality propagation may find 
broader potential applications within a wider class of experimental 
colloidal and biological liquid crystalline systems. Overall, our find-
ings emphasize how chirality transfer may arise from subtle chiral 
contributions of opposite handedness, which, depending on their 
magnitude and sign, can act either synergistically or competitively, 
therefore resulting in the diversity of chiral phase behaviours observed 
in nearly identical systems.

By combining both mesoscopic experimental measurements and 
theoretical predictions based on first-principles atomistic models, 
our work further provides a general methodological framework for 
the bottom-up, quantitative description of chirality transfer across 
length scales in cholesteric liquid crystals. Understanding and con-
trolling how chirality is expressed and transmitted in such helical 
superstructures not only may shed light on the various self-assembly 
processes and mechanisms leading to the large diversity of chiral 
liquid crystalline organizations, but also holds promise for the design 
of novel chiral materials with tailored optical, electronic or biological 
functionalities4–6.
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Methods
Virus strains and capsid symmetries
For this study, we employ two strains of filamentous bacteriophages 
referred to as M13 and Y21M (refs. 30,32). Both viruses belong to 
the Ff phage family, which includes the fd virus, and infect male (F+) 
Escherichia coli (E. coli). The phage capsid, protecting a single-stranded 
circular DNA core, is primarily composed of about 3,000 copies of 
50-residue, identical α-helical subunits, called p8 proteins, assembled 
into an overlapping, interdigitated helical structure. M13 and Y21M 
bear a high genetic similarity to the fd strain, implying that structural 
and biological properties are strongly conserved across these virions. 
In details, M13 and fd differ only by a single amino acid mutation at 
position 12 of the major coat protein p8, whereby a negatively charged 
aspartate (Asp) in fd is substituted by a neutral asparagine (Asn) in M13. 
This change in the solvent-accessible section of the protein modifies 
its overall charge but does not structurally affect the symmetry of the 
two viruses. Indeed, both virions have been shown to have an identical 
capsid structure, as determined by X-ray fibre diffraction and NMR 
studies, deposited under the 1IFI model in the PDB30,50. Conversely, for 
Y21M, the single amino acid mutation occurs deeper within the capsid 
at position 21 in the coat proteins p8, where a tyrosine (Tyr) in M13 and 
fd is replaced by a methionine (Met) in Y21M. This substitution alters 
the symmetry of the phage capsid and leads to a five-fold rotation axis 
combined with an exact two-fold helical axis (C5S2 symmetry), associ-
ated with a precise rotation angle of 36° between two consecutive 
pentameric rings of p8 proteins—as described in the 2C0W model in 
the PDB. This contrasts with the 1IFI model of M13, for which this angle 
is measured to be 33.23°, corresponding to a slight deviation from the 
two-fold screw symmetry32. Another difference between the two strains 
concerns the axial distance between two consecutive pentameric subu-
nits, varying from 1.60 to 1.67 nm depending on the model (Fig. 1)30,50. As 
a consequence of the spatial arrangement of the major coat proteins, a 
main geometrical groove as deep as 1 nm (ref. 51) exists on both phage 
capsids, corresponding to a right-handed thread characterized by the 
angle φ = 39.85° for M13 and 43.15° for Y21M (Figs. 1 and 2). A second 
right-handed thread can be identified on the M13 capsid, resulting from 
the lack of exact C5S2 symmetry in the 1IFI model and characterized 
by the angle ψ = 5.15°, whereas this groove is achiral for Y21M (2C0W 
model) with ψ = 0° (Fig. 1). These subtle structural differences between 
the two phages result in a large change of one of their physical proper-
ties, that is, their stiffness, with a persistence length of Lp = 9.9 μm for 
Y21M that contrasts with Lp = 2.8 μm for the semi-flexible M13 strain37. 
Conversely, their contour lengths Lc measured by transmission electron 
microscopy52 are very close with Lc = 995 nm and 920 nm for M13 and 
Y21M, respectively, and both viruses have the same diameter of about 
d = 7 nm (Fig. 1). The major coat proteins, p8, provide both viruses 
with a helical charge distribution and a negative surface charge in 
physiological conditions, carried by ionic amino acids exposed to the 
aqueous solvent. This net charge decreases as the buffer pH approaches 
the isoelectric point pIE (Fig. 2), which is in the range 4.2–4.5 for Y21M 
and M13 (ref. 53).

Virus preparation
Both M13 and Y21M viruses are grown using the ER2738 strain as the  
E. coli host bacteria and purified following standard biological proto-
cols. Virus PEGylation is performed by covalent binding between coat 
protein amino groups and N-hydroxysuccinimide ester-activated PEG 
of average molecular weight 21 kg mol−1 and radius of gyration Rg ≈ 7 nm, 
as described in more detail in ref. 44. PEGylation results in about 330 
PEG chains per virus, and the associated phase behaviour is shown to 
be driven by steric repulsion, that is, to be independent of ionic 
strength44. Note that the isoelectric point and persistence length of 
PEGylated viruses are expected to be similar to those of unmodified 
viruses, as only a limited fraction of about 10% of the coat proteins are 
bound with PEG54. By neglecting the curvature of the virion capsid, this 

coverage with PEG polymers yields an upper-bound estimate for the 
surface lateral pressure Π ≈ 0.1 mN m–1 (refs. 54,55), associated with a 
total effective force F ∝ Π/Rg × dLc ≈ 10 pN exerted onto the capsid—
more than two orders of magnitude below the typical elastic stretching 
modulus reported for such filamentous viruses56. The virus concentra-
tion Cvirus at each dilution level is determined using spectrophotome-
try37 with an error bar of ±2 mg ml–1. For PEGylated viruses, the volume 
fraction Φ is calculated using an effective rod diameter deff = d + 4Rg 
according to the following: Φ = CvirusNA

Mw
× π

4
Lcd 2

eff, where Mw is the virus 
molecular weight and NA is Avogadro’s number44. In order to study the 
pH dependence of the cholesteric pitch, different biological buffers 
are used covering basic to acidic conditions: 2-(cyclohexylamino)
ethanesulfonic acid (pKa 9.3); (tris(hydroxymethyl)aminomethane 
(pKa 8.2); 4-morpholineethanesulfonic acid (pKa 6.1); pyridine (pKa 5.2); 
propianic acid (pKa 4.9); acetic acid (pKa 4.7); and chloroacetic acid  
(pKa 2.9). The buffering agent is introduced with an analytical concen-
tration of 20 mM, and pH and ionic strength IS are adjusted with tunable 
amounts of NaOH (or HCl) and NaCl, respectively. After extensive 
dialysis, virus suspensions of different dilutions are prepared in previ-
ously cleaned (successive rinsing with acetone, isopropanol and dis-
tilled water followed by 30 min of UV–ozone treatment (Harrick 
Plasma)) quartz capillary tubes of diameter ~1.5 mm for polarizing 
microscopy observations, and between a cover slip and glass slide with 
a parafilm spacer of about 100 μm for samples used for handedness 
determination by fluorescence microscopy. In the latter case, samples 
are doped at a fraction of 1:105 with red- or green-labelled viruses, 
grafted with DyLight 550 N-hydroxysuccinimide ester (Thermo Fischer) 
and Alexa Fluor 488 N-hydroxysuccinimide ester (Thermo Fischer), 
respectively.

Optical microscopy experiments
Epifluorescence images are obtained using an inverted optical micro-
scope (IX71, Olympus) equipped with a ×100 oil-immersion objec-
tive (numerical aperture, 1.4; UPLSAPO); a piezo device for objective 
z-positioning (P-721 PIFOC Piezo Flexure Objective Scanner, PI) 
operated by computer interface software (Meta-Morph, Molecular 
Devices); a light-emitting diode (LED) light engine (LedHUB, Omicron); 
and a fluorescence imaging camera (Neo sCMOS, Andor Technology). 
The mirror symmetry of the whole optical set-up is checked before 
each observation. The kinetics of establishing the chiral nematic 
phase is shown to be sample dependent: a few days to a few weeks of 
equilibration are applied to get homogeneous fingerprint textures 
(inset of Fig. 3 and Extended Data Fig. 4f), resulting from the virion 
planar anchoring at the capillary walls. Cholesteric pitch measure-
ments are carried out at low magnification (×5 LMPlanFl objective; 
numerical aperture, 0.13) with a polarizing microscope (BX-51, Olym-
pus) equipped with a JAI-CV-M7+ colour camera. The cholesteric pitch 
determined from fingerprint textures is an average value of 10 to 20 
measurements, and error bars correspond to the dispersion of the 
experimental values. The nematic phase is ascribed to samples for 
which no helical pitch is observed over the millimetre range, corre-
sponding to the capillary diameter.

Numerical methods
The molecular structures of the whole capsids of the M13 and Y21M 
viruses are respectively reconstructed from the atomic models 1IFI 
and 2C0W deposited in the PDB (as described previously)30,50. Potential 
energies are parametrized using the GROMOS 53A6 force field43 to 
explicitly account for van der Waals and excluded-volume interactions 
between each pair of atoms within the capsids. Screened electrostatic 
contributions are described by the generalized reaction field method57, 
corresponding to a computationally efficient treatment of long-ranged 
electrostatic forces based on the Kirkwood–Onsager continuum the-
ory of dielectric polarization57. In particular, this approach allows for 
the use of a finite truncation cut-off (as described in the following), 
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combined with an implicit representation of the ionic environment in 
terms of the solvent ionic strength, temperature and dielectric permit-
tivity; it has been shown to accurately capture the thermodynamics of 
a wide variety of protein condensates43. Molecular charge distributions 
are determined using the PROPKA plugin of the pdb2pqr pipeline58. For 
computational tractability, a cut-off radius rcut = 3.5 nm is applied in the 
calculation of all electrostatic energies. This approximation is expected 
to hold in the limit where the Debye screening length κ−1 is such that 
κ−1 ≪ rcut, which is typically valid for ionic strengths IS ≥ 100 mM. In this 
context, the effective steric contribution is computed by evaluating 
the full force field in the limit of very high salt concentrations (IS = 1 M).

For the computation of cholesteric pitches, the system free energy 
ℱ  is derived for both the electrostatic and suprahelix models at the 
second virial level as a functional of the full intermolecular pairwise 
potential Uinter, based on a perturbative expansion of the Onsager 
expression ℱ0 for the uniform, untwisted nematic state (Supplementary 
Section I). The optimal angular arrangement of the particles about the 
local director, which generally depends on the detailed virus structure 
and thermodynamic state, is determined by functional minimization 
of ℱ0 at fixed concentration27. The corresponding equilibrium pitch P 
and the twist elastic constant K22 are obtained by subsequent minimiza-
tion of the full free energy ℱ  based on the computed local orientational 
distribution (Supplementary Section I), and may be formulated in 
terms of a hierarchy of generalized virial integrals involving Uinter  
(ref. 27). Such integrals are evaluated via high-performance Monte 
Carlo sampling techniques as described elsewhere59. Importantly, this 
framework enables us to accurately infer the most favourable, 
large-scale (micro- to millimetre range) cholesteric structure from the 
atomistic details of the different virus models, with a level of precision 
tunable through the statistical resolution of the stochastic integration 
scheme27. Accordingly, error bars are estimated as the standard error 
of the computed pitches across ten independent Monte Carlo runs, 
using a number ≈ 1014 of integration steps. Binodal points are calculated 
by equating chemical potentials and osmotic pressures in the isotropic 
and cholesteric phases, and solving the resulting coupled coexistence 
equations numerically27.

Data availability
All the data supporting the findings of this study are included in the 
article and its Supplementary Information file. Source data are pro-
vided with this paper.

Code availability
The numerical codes used for molecular structure preparation and 
density functional calculations can be accessed via GitHub at https://
github.com/mtortora/chiralDFT.
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Extended Data Fig. 1 | Opposite handedness of the cholesteric helix for M13 
and Y21M strains. Determined by fluorescence microscopy in (a) PEGylated M13 
suspension (pH 8.2, IS=110 mM) and (b) Y21M suspension (pH 8.2, IS=60 mM).  
A small fraction (1:105) of viruses are labelled with red or green fluorescent tags to 
indicate the orientation of the nematic director in each focal plane, as shown by 
arrows. Their rotation through the sample thickness Z reveals the handedness  

of the cholesteric helicity, which is found to be left-handed for M13 and  
M13-PEG and right-handed for Y21M strain. The periodicity of the cholesteric 
helix, or cholesteric pitch P, is also indicated for both virion strains, and its  
value is positive (negative) for right (left) handedness. Each image has a size of  
50 μm x 50 μm.
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Extended Data Fig. 2 | Electrostatic dependence of the cholesteric pitch, P. 
Measurements for Y21M (open symbols) and M13 (full symbols) for different 
ionic strengths IS at fixed pH 8 as a function of the respective virus concentration. 
The data of Y21M phages at pH 8 and IS = 110 mM are taken from Ref. 37. For both 
virions, ∣P∣ increases with increasing ionic strength, that is, with increasing 

the screening of electrostatic interactions. For each data set, the binodal 
concentrations of the isotropic-to-cholesteric transition corresponding to 
the stability limit of the isotropic phase, Ciso, are shown by a dotted line whose 
colour corresponds to the associated colour of the symbols. For error bar 
determination, see Methods.
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Extended Data Fig. 3 | Inversion of the twist handedness between 
right-handed screws of varying thread angle, φ. The helical twist resulting 
from the close packing of two right-handed (that is 0 < φ < + 90o) screws leads 

(a) to a right-handed twist (and therefore a right-handed cholesteric pitch 
P > 0) of angle 2φ > 0 when φ < 45o and (b) to a left-handed twist (P < 0) of 
angle − (180o − 2φ) < 0 for φ > 45o.
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P
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Extended Data Fig. 4 | Phase behaviour of semi-flexible M13 (a)-(c) and 
PEGylated M13-PEG (d)-(f ) virus suspensions at pH close to the isoelectric 
point, pIE. (a) and (d): Schematic representation of the filamentous viruses, 
whose colloidal stability stems from either (a) electrostatic or (d) steric 
repulsion. (b) and (e): Macroscopic observation under white light of the virion 
suspensions: while aggregates are observed in raw M13 virus dispersions at 

pH ≃ pIE, the colloidal stability is preserved in the M13-PEG system. Scale bar: 
2 mm. (c) and (f): Polarized optical microscopy images displaying a nematic-
like birefingent texture with fibrillar moieties for raw M13 viruses (c) and the 
characteristic fingerprint texture of the cholesteric phase for PEGylated particles 
(f). Scale bar: 200 μm.
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Extended Data Fig. 5 | Helical supramolecular structures. They are formed 
by condensation of filamentous viruses initially organized in a cholesteric 
mesophase, induced by depletion interaction using poly(ethylene glycol) 

polymer (molecular weight Mw=2000 g mol-1; Sigma-Aldrich) and observed  
by (a) polarizing and (b) differential interference contrast (DIC) microscopy. 
Scale bar: 2 μm.
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I. FRANK-OSEEN FREE ENERGY OF THE CHOLESTERIC STATE

According to the continuum elastic theory of the nematic liquid crystalline state, the

Frank-Oseen free energy density f can be expanded in a power series of the twist deformation

of the orientational ordering: f ≈ f0 + Ktq + 1
2
K22q

2, where f0 is the free energy density

of the undeformed nematic phase [1] and q accounts for the deformation wavelength. The

inverse cholesteric pitch q = 2π/P is obtained by minimizing the free energy: q = −Kt/K22,

with Kt = (∂f /∂q)q=0 the chiral strength and K22 = (∂2f /∂q2)q=0 the twist elastic constant

[2, 3]. Kt accounts for the intrinsic propensity of the system to generate twist deformations,

as a consequence of chirality of the intermolecular interactions; Kt changes its sign for

chiral enantiomers, and vanishes in the absence of molecular chirality. K22 is the twist

elastic constants and accounts for the resistance of the liquid crystal order to orientational

deformation (see Section II).

Let us consider a cholesteric phase of director field n and helical axis ez in the laboratory

frame Rlab ≡
[
ex ey ez

]
. In the absence of macroscopic twist (q → 0), the free energy

density f0 of the reference nematic state with uniform director n0 ≡ ex reads as, at the

second-virial level [3, 4],

βf0[ψ] = 4π2ρ

ˆ 1

−1

dux ψ(ux)
{

log
[
ρλ3ψ(ux)

]
− 1
}

− ρ2

2

ˆ
V

dr12

‹
dR1dR2 ψ(u1x)ψ(u2x)f(r12,R1,R2), (1)

where the Mayer function f depends on the full atomistic interaction energy Uinter of a pair

of viruses with respective orientations R1,2 and relative center-of-mass separation r12,

f(r12,R1,R2) ≡ exp
{
− βUinter(r12,R1,R2)

}
− 1,

with β ≡ 1/kBT . In Eq. (1), ψ is the so-called orientational distribution function, which

quantifies the angular fluctuations of the virus long axes u ≡ R· ex about n0, and λ ≡ λ(T )

is an irrelevant (de Broglie) thermal lengthscale.

At thermodynamic equilibrium, the most-favorable particle arrangement corresponds to

the optimal degree of local nematic alignment of the viruses, as described by the dispersion

of angles cos θ ≡ u · n0, and may be obtained by functional minimization of Eq. (1) at fixed

temperature T and virus number density ρ,

ψeq(cos θ) =
1

Z
exp

{
ρ

4π2

ˆ
V

dr12

‹
dR1dR2 ψeq(u2x)f(r12,R1,R2)× δ

(
u1x − cos θ

)}
, (2)
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where δ is the Dirac distribution and Z a Lagrange multiplier ensuring the proper normal-

ization of Eq. (2) [3]. K22 and Kt may then be derived in the form [5]

βK22 =
ρ2

2

ˆ
V

dr12

‹
dR1dR2 f(r12,R1,R2)× ψ̇eq(u1x)ψ̇eq(u2x)r

2
zu1yu2y, (3)

βKt = −ρ
2

2

ˆ
V

dr12

‹
dR1dR2 f(r12,R1,R2)× ψeq(u1x)ψ̇eq(u2x)rzu2y, (4)

with ψ̇eq the first derivative of ψeq. Eq. (2) is solved numerically via a self-consistent iterative

algorithm [6], and Eqs. (3)–(4) are evaluated using accurate and optimized virial integration

schemes [7], as discussed in detail elsewhere [3, 8]. The corresponding numerical codes are

available on GitHub [9].

II. TWIST ELASTIC CONSTANT K22

The twist elastic constant K22, as introduced in the Frank-Oseen free energy for the

nematic elasticity (see Section I), describes the resistance of the liquid crystal to helical de-

formation [1]. While elastic constants have been measured for various molecular mesophases,

experimental values for colloidal liquid crystals are rather scarce to date [10, 11]. Here, we

compare experimental and theoretical values for K22, with the later calculated by minimiz-

ing the free energy density of the electrostatic model (2C0W), as well as the suprahelix

one (Fig. S1). After renormalization of the virus concentration by their respective binodal

concentration Ciso, it turns out thatK22 is almost independent of the different probed param-

eters, i.e. the atomistic details of the virion surface (charge distributions), the electrostatic

interactions (pH and ionic strength), and the overall particle shape (backbone helicity). The

nearly linear concentration dependence of K22 is not observed in reported experimental data

for semi-flexible viruses, rather a constant value of about K22 ' 100kBT/µm is found [10].

As data are missing for rigid filamentous viruses, we measure experimentally the twist elastic

constant for stiff Y21M phages by unwinding its cholesteric phase under external magnetic

field [1]. Specifically, K22 is obtained by determining the critical magnetic field Hc necessary

to induce the cholesteric-to-nematic phase transition, which are related by [1]:

K22 = χv

(
P ×Hc

π2

)2

, (5)

where P is the cholesteric pitch in absence of magnetic field, and χv the diamagnetic

anisotropy per unit volume. χv depends on the diamagnetic anisotropy χ0 = χ‖ − χ⊥ =

3
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FIG. S1. Twist elastic constant, K22, as a function of the normalized viral rod concentration

calculated with electrostatic (2C0W) and suprahelix models (open symbols) at three different

ionic conditions, and measured experimentally for stiff Y21M phages (full red dots, IS=25 mM).

Our theoretical and experimental results are in very good agreement, and are consistent with the

analytical expression of K22 obtained by Odijk [12] for rigid hard rods (Eq. (7), black dashed line).

Error bars are determined as detailed in Methods.

7× 10−24 J/T2 per virus particle [10], via χv = ρχ0 with ρ = CvirusNA/MW the rod number

density, MW = 1.64× 107 g/mol the virus molecular weight, and NA Avogadro’s number.

Experiments are performed using an home made electro-magnet with a gap of about 6 cm

between the magnet poles of diameter 9.5 cm, allowing for an uniform field to be applied to

capillary samples. The resulting magnetic field can be finely tuned by varying the current up

to 36 A corresponding to maximal magnetic field of Hmax=1.10 T. The critical magnetic field

Hc to induce the cholesteric-to-nematic transition is determined by incremental increases of

the magnetic field. Each field increment ∆H = 0.05 to 0.1 T is applied for about 1 hour to

allow for sample stabilization, followed by a quick sample observation with optical polarizing

microscopy. The resulting twist elastic constants (Eq. 5) are shown in Fig. S1. Experimental

values of K22 are in very good agreement with the theoretical ones, and differ significantly

by their linear dependence with the particle concentration from the results reported for
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semi-flexible bacteriophages [10]. It is worth pointing out that the linear increase of K22

with the particle volume fraction is consistent with Odijk’s theory [12] (Fig. S1). Indeed,

theoretical predictions by Odijk represent a benchmark for the Frank-Oseen elastic constant

determination of long stiff hard rods, for which an analytical expression of K22 has been

derived in the limit of strong orientational alignment and within the range of validity of the

second virial approximation [12]:

K22 =
7

24π

kBT

d
Φ
Lc
d
. (6)

By substituting in Eq. 6 the binodal value predicted by Onsager’s theory for high rod

aspect ratio, Φiso ' 3.3 d
Lc

, we obtain:

K22 ' 0.3
kBT

d

Φ

Φiso

, (7)

as plotted in Fig. S1.

It is worth emphasizing that the determination of the twist elastic constant is of major

importance when studying the experimental dependence of the cholesteric pitch P , defined

as P = 2πK22/Kt (see Supplementary Section I). Indeed, for a given system, any variation

of the pitch cannot be unequivocally attributed to the variation of the chiral strength Kt,

but may be significantly affected by a change of the twist elastic constant K22, as it may

occur for instance close to a phase transition.

III. ELECTROSTATIC MODEL VS. SEMI-FLEXIBLE M13 VIRUS STRAIN

In Fig. S2, the electrostatic model using the atomistic representations of the M13 capsid

(1IFI three-dimensional structure, Fig. 2) is compared with the experimental cholesteric

behavior of M13 virions. It turns out that the electrostatic model does not capture the

experimentally-observed cholesteric assembly of M13 virions. If a left-handed helicity is pre-

dicted as observed experimentally, the large magnitude of the computed pitch |P | evidences

a strong underestimation of the chirality of the M13 cholesteric suspensions. A more detailed

analysis of the electrostatic model based on the chiral potential of mean force reveals that

the calculated cholesteric behavior may be attributed to the competition between the two

distinct threads of the M13 virus capsids, which largely unwinds their preferred cholesteric

pitch at higher densities (see Supplementary Section VI). In brief, the electrostatic model
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FIG. S2. M13 virus suspensions and electrostatic model. Inverse of cholesteric pitch P

in suspensions of semi-flexible M13 viruses at low surface charge (pH 5, brown full symbol), and

at high surface charge (pH 8, green full symbols), both at a fixed ionic strength of IS=110 mM.

Contrary to Y21M strain (Fig. 3), the electrostatic model (green open symbols) fails to account

for the cholesteric behavior of the semi-flexible M13 phage at high pH. Error bars are determined

as detailed in Methods.

has been shown to quantitatively account for the cholesleric phase formed by the Y21M

strain (see main text and Fig. 3), but it fails to explain the cholesteric behavior of the

semi-flexible M13 phage for which another mechanism of chirality transfer has therefore to

be invoked (see the suprahelix model, as detailed in the main text).

IV. HARD HELICES: PITCH VS. RADIUS MODEL

The parametric equations of a right-handed helix of radius r, internal helical pitch h

(Fig. 1), and oriented along the ẑ axis are
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
x(t) = r cos

2πt

h
,

y(t) = r sin
2πt

h
,

z(t) = t,

(8)

for which the thread angle ϕ is defined as

ϕ = arctan
h

2πr
. (9)

The relation between the end-to-end distance L and the contour length Lc of the helix is

given by

L2 =
L2
c

1 +
(

2πr
h

)2 + 4r2 sin2 πLc

h
√

1 +
(

2πr
h

)2
. (10)

In order to determine the end-to-end distance vs. contour length relationship for our

viruses of persistence length Lp, we have to go beyond the simplest model provided by

Kratky & Porod [13], which only holds for isolated polymeric chains. We thus examine

the case of a filament within a narrow tube of diameter D, with D � Lp, as originally

proposed by Odijk to introduce the concept of deflection length [14]. Here, the tube model

provides a mean-field representation of the effective confinement induced by the crowded

environment around a given rod-like virus in the (chiral) nematic phase, which presumably

arises from short-ranged repulsive forces involving its nearest neighbors. For long chains

such that D � Lc, the deflection length λ generally depends on the two relevant length

scales D and Lp of the system, and is related to the deflection angle θ by

θ ' D

λ
, (11)

valid in the limit of small θ.

Let us consider an elastic worm-like filament of contour length Lc, and denote by r(s)

the position of an arbitrary chain segment at curvilinear abscissa s. We recall that in the

absence of excluded-volume interactions, the orientational correlations of the chain decay

exponentially, 〈
u(s) · u(0)

〉
=
〈

cos θ(s)
〉

= exp

(
− s

Lp

)
, (12)

where 〈·〉 denotes the canonical thermodynamic average, with u(s) ≡ dr/ds the bond unit

vector and θ(s) the angle between u(s) and u(0). In the stiff-rod limit, i.e. for s� Lp and
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small θ, we can expand Eq. (12) which yields for the mean square bending angle〈
θ2(s)

〉
' 2

s

Lp
. (13)

Hence, for s ≡ λ, we obtain

〈
θ2
〉
' 2

λ

Lp
'
(
D

λ

)2

. (14)

Eqs. (13) and (14) thus lead to a general expression of the deflection length λ in the scaling

form

λ ' D2/3L1/3
p , (15)

which corresponds to the typical curvilinear distance beyond which angular fluctuations

deviate from those expected from Eq. (12) due to the steric constraints imposed by the

surrounding nematic field. The squared end-to-end distance L2 of the viral filament in the

narrow tube then reads as

L2 =
[
r(Lc)− r(0)

]2
=

[ˆ Lc

0

dsu(s)

]
·
[ˆ Lc

0

ds′u(s′)

]
=

¨ Lc

0

dsds′ cos θ(s′ − s). (16)

Assuming θ to be a slowly-varying function of s for a stiff polymer, we may write

cos θ(s′ − s) ' cos θ(s) + (s′ − s)d cos θ(s)

ds
,

so that Eq. (16) may be recast in the form

L2 ' L2
c

〈
cos θ

〉
c

+

¨ Lc

0

dsds′(s′ − s)d cos θ(s)

ds
, (17)

with 〈·〉c the filament contour average,

〈
·
〉
c
≡ 1

Lc

ˆ Lc

0

ds · .

The integration by parts of the last term in Eq. (17) leads to, after rearrangements,

L2 ' 2L2
c

〈
cos θ

〉
c
− L2

c

2

[
cos θ(0) + cos θ(Lc)

]
. (18)

In the long-chain limit (D � Lc), let us neglect potential end effects on the shape

fluctuations of the filament, so that〈
cos θ(s)

〉
'
〈〈

cos θ
〉
c

〉
∀s ∈ [0, Lc].
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FIG. S3. Cholesteric pitch P calculated by the suprahelix model for M13-PEG system with

h = 2.8Lp when the explicit dependence of the virion effective length L with the volume fraction

Φ is taken into account (full red dots for which each helix radius r, in nm, is indicated according

to Eq. 10) and comparison with the calculation performed at fixed L for a given density Φ = 0.32

(open black squares). As the difference between the two approaches is not significant, we may

neglect the density variations of L for simplicity, and instead use a single fixed value over the entire

concentration range, as plotted in Fig. 4b. Error bars are determined as detailed in Methods.

The thermal average of Eq. (18) then simply reads as

〈
L2
〉
' L2

c

〈
cos θ

〉
' L2

c

(
1− 1

2

〈
θ2
〉)
,

which yields, using Eqs. (14) and (15),

〈
L2
〉
' L2

c

[
1−

(
D

Lp

)2/3
]
, (19)

valid in the limit D � Lp and D � Lc.

The tube diameter D is assumed to be twice the radial rod-to-rod distance δinter, which

has been shown experimentally to behave as a 2D swelling law [15] according to

δ2
inter =

π

2
√

3
d2Φ−1, (20)
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where d and Φ are the respective rod diameter and volume fraction. Plugged into Eq. (19)

with D ∼ 2δinter, this gives

〈
L2
〉
' L2

c

1−

(
2π√

3

(
d

Lp

)2

Φ−1

)1/3
 , (21)

or equivalently, by using the definition of the volume fraction Φ = ρ v0 = CvirusNA/Mw ×

πLcd
2/4 where NA is Avogadro’s number, Mw the virus molecular weight, ρ the rod number

density and v0 the virus volume,

〈
L2
〉
' L2

c

1−

(
8√
3

(
Mw

NACvirusLcL2
p

)2
)1/3

 , (22)

independent of the virus diameter d.

Note that numerically, roots of Eq. (21) exist for helical pitches such that h <∼ Lp/2.

According to Eqs. 10 and 22, the resulting suprahelical virion backbone deformation may

then be expressed in terms of the internal pitch h as the sole adjustable parameter for a

given virion persistence length Lp, and at fixed rod packing fraction. Considering all the

approximations of the model and more importantly, the fact that our hard helices are not

strictly speaking flexible but represent a mean conformation, we choose to only keep the first

term of Eq. (10) to make the pitch vs. radius relationship more tractable from a numerical

point of view. Additionally, since the computed cholesteric pitches are found to be rather

insensitive to the variations of the virion end-to-end distance L with the volume fraction Φ

(see Fig. S3), we further neglect the density dependence of L in Eq. (21). This simplified

approach is sufficient to properly account for the experimental data, as shown in Fig. 4b.

The sole “free” parameters of our model is the coefficient α relating the internal helical

pitch of the helix with the persistence length, i.e. h = αLp. The optimization of α to

account for the experimental data as reported in Fig. 4b is shown in Fig. S4, where we

observe that the chirality of the cholesteric phase — i.e. the inverse of the cholesteric pitch

|P | — increases by increasing the curliness of the helix at given contour and persistence

lengths, Lc and Lp.
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FIG. S4. Suprahelix model dependence with the internal helicity calculated at given

contour length Lc = 0.995 µm and persistence length Lp = 2.8µm. The chirality of the cholesteric

phase increases by decreasing the internal helical periodicity h of the helix.

V. SCALING BEHAVIOR OF HARD-HELIX CHOLESTERICS

Let us show that the equilibrium cholesteric pitch P of hard helices with fixed length Lc

and radius r may be expressed as a unique function of the reduced volume fraction Φ/Φiso.

In the limit of weak helicity (r � h), we expect the local orientation distribution function

ψ of the system to closely match that ψcyl of a straight cylinder with identical dimensions.

In the context of Onsager theory [4], for Lc � d, the equilibrium shape of ψcyl is entirely

controlled by the dimensionless parameter ρL2
cd ∝ ΦLc/d, where ρ is the molecular number

density and Φ ≡ ρπLcd
2/4 is the corresponding volume fraction. Thus,

ψeq = ψcyl
eq

(
Φ
Lc
d

; θ

)
≡ ψeq

(
Φ

Φiso

; θ

)
, (23)

where we use for the binodal volume fraction Φiso ∝ d/Lc, and θ denotes the angle between

the long axis of a helical particle and the local nematic director.

In this case, using Eq. (3), it may be shown that the Frank twist modulus K22 of such

“rod-like” helices may be cast in the form [16, 17]

βK22 = ρ2L4
cd×L2

[
ψ̇eq

]
, (24)
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with β ≡ 1/kBT the inverse temperature and ψ̇eq the first derivative of ψeq with respect to

its angular argument. In Eq. (24), the functional L2 takes the form of a geometrical integral

over all angular degrees of freedom describing the mutual orientations of pairs of overlapping

particles [12, 16] (c.f. Eq. (3)), and is such that Eq. (24) simply reduces to Eq. (6) in the

limit of strong orientational order. Thus, it follows from Eq. (23) that

L2

[
ψ̇eq

]
≡M2

(
Φ

Φiso

)
, (25)

where the dimensionless scaling function M2 is independent of the molecular geometry in

the limit Lc � d [16]. Using Eqs. (24) and (25), we may write

dβK22 ∝ Φ2L
2
c

d2
×M2

(
Φ

Φiso

)
∝
(

Φ

Φiso

)2

M2

(
Φ

Φiso

)
. (26)

Hence, the twist modulus dβK22, rescaled by the particle diameter d, may be written as a

function of the sole reduced packing fraction Φ/Φiso.

Analogously, in the case of shallow-grooved hard helices (r � h), the chiral strength Kt

(Eq. (4)) may be approximated as [17]

βKt = ρ2L2
cdδ0 ×Lt

[
ψeq, ψ̇eq

]
≡ ρ2L2

cdδ0 ×Mt

(
Φ

Φiso

)
,

with δ0 ∝ r the typical groove depth. Thus, we obtain

dβKt ∝ Φ2 δ0

d2
×Mt

(
Φ

Φiso

)
∝ δ0

L2
c

×
(

Φ

Φiso

)2

Mt

(
Φ

Φiso

)
. (27)

Using Eqs. (26) and (27), the equilibrium cholesteric pitch P reads as

P ∝ K22

Kt

∝ L2
c

δ0

×Q
(

Φ

Φiso

)
, (28)

where the scaling function Q ≡ M2/Mt is independent of molecular dimensions for Lc � d

and r � h. Note that for weakly-curved suprahelices with h � Lc, corresponding to finite

fractions of full helices, the thread can a priori be a function of the helix contour length

Lc, such that δ0 ≡ δ0(Lc). Thus the dependence of the cholesteric pitch on the virus length

cannot be trivially predicted from Eq. (28) in our case, which led us to analyze in more

details these variations in Section VII.

For M13 viruses, we assume that PEGylation may affect the effective diameter d of the

particles, but has only a limited impact on their overall contour length Lc and the magnitude
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δ0 of their helical fluctuations. Eq. (28) then imposes that P depends solely on Φ/Φiso, in

agreement with the observed experimental behavior of PEGylated viruses (Fig. 5 of the

main text). Furthermore, in light of the vanishingly-small values of 2π/P associated with

the electrostatic model of ground-state M13 conformations (Fig. 3 of the main text), we

postulate that the effects of the detailed chiral surface charge distribution on the cholesteric

assembly of thermalized viruses may be neglected. We may then simply consider the viruses

as uniformly-charged (helical) rods, whose liquid-crystalline behavior can be remapped to

that of a hard-body system with a charge- and ionic-strength-dependent effective diameter

deff > d [18, 19]. Since Eq. (28) is independent of d, we thus expect the cholesteric pitch

of bare viruses to be determined by the same unique function of Φ/Φiso as their PEGylated

counterparts, regardless of ionic strength — which is consistent with the predictions of the

suprahelix model (Fig. 5 of the main text). Thus, the collapse of our experimental data onto

a single master curve evidences the irrelevance of the local symmetry of the surface charge

distribution for the cholesteric phase of M13 viruses — and demonstrates that the origin of

their chirality instead lies in long-wavelength helicoidal deformation modes, which are not

significantly affected by PEGylation or changes in ionic conditions.

VI. CHIRAL POTENTIAL OF MEAN FORCE

In order to predict the thermodynamically-favored handedness in supramolecular assem-

blies of chiral particles, it is convenient to introduce the so-called chiral potential of mean

force (PMF) [8, 20]. Let us consider a pair of viral particles with arbitrary orientations R1,

R2 and center-of-mass separation r12, and denote by θ12 ≡ arccos(u1 ·u2) the angle between

the respective virus long axes u1 and u2. Using the notations of Section I, we define the

pairwise angular PMF associated with right- and left-handed two-particle configurations

via [8]

U±(θ12) ≡ −kBT log
〈
e−βUinter

〉(θ12)

± , (29)

with
〈
·
〉(θ)

± a chiral spatial and angular average,

〈
F
〉(θ)

± ≡
1

Ω±

ˆ
V

dr12

‹
dR1dR2 F (r12,R1,R2) δ(u1 ·u2− cos θ)Θ

{
± r12 · (u1×u2)

}
(30)

for any function F of the configurational degrees of freedom r12, R1 and R2. In Eq. (30), Θ

is the Heaviside step function, such that the ± subscript denotes an integral over all right-
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(resp. left-) handed arrangements, characterized by r12 · (u1 × u2) > 0 (resp. < 0), and Ω±

represents the total volume of the phase space associated with virus pair configurations of

fixed handedness,

Ω± =
(8π2)2

2
V.

Using Eqs. (29) and (30), a system of two particles with fixed inter-axis angle θ12 may

adopt a thermodynamically-stable right-handed configuration if the net repulsion associated

with such an arrangement is lower than that of the respective left-handed structure — i.e.,

if U+(θ12) < U−(θ12). Reciprocally, U+(θ12) > U−(θ12) indicates a greater favorability of

left-handed assemblies. The relative stability of helical supramolecular structures is thus

quantified by sign of the chiral component of the PMF,

∆cU(θ) ≡ U+(θ)− U−(θ) = kbT log

〈
e−βUinter

〉(θ)

−〈
e−βUinter

〉(θ)

+

. (31)

We report in Fig. S5 the angular variations of ∆cU for the various molecular systems

considered in the main text. In the case of electrostatic model applied to Y21M (2C0W

capsid structure, Fig. S5a), we find that ∆cU bears a unique minimum ∆cUmin < 0 near

inter-axis angles θmin ' 70°, indicating that the optimal close-packing of the viruses may

be achieved in a strongly-twisted right-handed configuration — consistent with the large

primary thread angle ϕ ' 43.15° < 45° inferred from the molecular symmetries of the

capsid (see Figs. 1-2 and Extended Data Fig. 2a). Such purely geometric considerations

— which mirror the seminal work of Straley [5], as illustrated in Extended Data Fig. 2

— generally need to be interpreted with caution, since the large value of θ12 associated

with this close-approach arrangement is typically incompatible with the local orientational

alignment characterizing the cholesteric phase [21], and further neglect the role of the angular

fluctuations underpinning liquid-crystalline assemblies [1]. However, a closer inspection of

Fig. S5a reveals that ∆cUmin is also associated with a regime of weakly-negative values of

∆cU at smaller twist angles 0 < θ12 < θmin, which encompasses the relative orientations

more realistically sampled by close-neighbor rods in a standard cholesteric system [21] —

and thus provides a simple explanation for the stability of the observed right-handed phase

(see Fig. 3 and Extended Data Fig. 1b).

Conversely, for the M13 electrostatic (1IFI) model displaying a more complex helical

charge distribution (Fig. 2), we remark that ∆cU exhibits a drastically-different and strongly
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non-monotonic profile (Fig. S5b), in which the global minimum ∆cUmin < 0 around θmin '

70° is now associated with an intermediary peak ∆cUmax > 0 near θmax ' 45°, along with

a local minimum ∆cU loc < 0 at smaller angles θloc ' 20°. We attribute this more complex

behavior to the interplay between the primary and secondary threads identified from the

M13 capsid structure (Figs. 1-2). Indeed, a simple extrapolation of the geometric argument

in Extended Data Fig. 2 suggests that the mutual alignment of the primary groove of a given

virus, of thread angle ϕ ' 39.85°, with the secondary groove ψ ' 5.15° of a neighboring

capsid (Figs. 1-2) gives rise to a left-handed close-approach configuration with twist angle

θ12 = ϕ+ψ — thus accounting for the peak in ∆cU around θmax ' 45°, or equivalently θmin '

−45°. In this context, the local minimum near θloc ' 20° likely proceeds from the competition

between the large-angle propensity for left-handed arrangements and the broader angular

preference for right-handed assemblies resulting from the interactions between the capsid

primary threads (c.f. Fig. S5a).

The non-monotonic dependence of the 1IFI cholesteric pitch on virus concentration

(Fig. 3) may then be interpreted as follows. The larger orientational fluctuations associ-

ated with lower particle densities, which stem from the weaker degree of local alignment,

may enable vicinal capsids to sample a regime of wider inter-axis angles, in which left-

handed configurations are typically more favorable — as evidenced by the intermediary

peak in ∆cU (Fig. S5b). Such configurations are however progressively precluded at higher

concentrations, for which the viruses may be restricted to a regime of increasingly-small

relative angles, at which right-handed configurations become increasingly stable. Thus, the

left-handed cholesteric phase obtained near the isotropic-to-nematic transition point, along

with its subsequent unwinding observed at higher densities (Fig. 3), may ensue from the

antagonistic interplay between left- and right-handed particle arrangements — which arises

from subtle, concentration-dependent variations in their local orientational fluctuations.

In the case of the M13 suprahelix model, the inclusion of the weakly-solenoidal backbone

deformation instead leads to the appearance of a single minimum ∆cUmin < 0 (Fig. S6),

indicating a unequivocal preference for left-handed phases — as expected from such weakly-

curled, right-handed helical conformations with effective thread angles φ� 45° (Figs.1 & 2

and Extended Data Fig. 2). The magnitude of this peak for PEGylated viruses is further

found to be nearly tenfold larger than that of the corresponding extrema of ∆cU for the

electrostatic model (Fig. S5b), suggesting that this large-scale helicity dominates cholesteric
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FIG. S5. Chiral potential of mean force, ∆Ūc, as a function of the virus inter-axis angle,

θ12. ∆Ūc is calculated by integration of the pair potential over its spatial and angular degrees of

freedom, for the electrostatic model of the (a) 2C0W (Y21M) and (b) 1IFI (M13) capsid structures

at various pH and ionic strengths.

assembly over the local surface structure and charge distribution of the capsid. This obser-

vation reflects the conclusions of previous studies of DNA-origami-based liquid crystals [8],

and is corroborated by the near-identical variations of ∆cU for PEGylated and unPEGylated

models of M13 viruses (Fig. S6, blue and black lines), confirming that the obtained behavior
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FIG. S6. Chiral potential of mean force, ∆Ūc, as a function of the virus inter-axis angle, θ12,

for the suprahelix model of PEGylated phages (blue and red lines for M13-PEG and Y21M-PEG,

respectively), as well as for unPEGylated M13 virions.

is now largely insensitive to the detailed atomic composition of the system. However, for

Y21M variants, the larger bending rigidity Lp translates into a weaker solenoidal conforma-

tion of the backbone (see Sec. IV), which provides a negligible contribution to the chiral

PMF (Fig. S6, red line). Thus, the cholesteric assembly of Y21M is chiefly governed by

short-ranged electrostatic interactions driven by the local surface symmetries of the capsid.

VII. VIRUS LENGTH DEPENDENCE OF THE CHOLESTERIC PITCH

As detailed in Supplementary Section IV, the internal pitch h = 2.8Lp of the helical

fluctuations underlying the suprahelix model typically far exceeds the contour length Lc of

the capsid (h/Lc ' 8 for M13, h/Lc ' 30 for Y21M), implying that these subtle deformations

at the scale of an individual virion may only span a small fraction of a full helical period,

as illustrated in Fig. 2. In this context, the following question arises: how is the resulting

cholesteric pitch affected by altering the full contour length of the viruses? For this purpose,

we exploit the genetic versatility of filamentous bacteriophages to grow a mutant called

M13K07, which is 20% longer than the semi-flexible M13KE (referred to as M13 throughout

the paper). Both viruses are monodisperse in size, but M13K07 exhibits a contour length
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FIG. S7. Virus length dependence of the cholesteric pitch. Inverse of cholesteric pitch P in

suspensions of M13 (blue squares) and M13K07 (green circles) viruses of respective contour length

LM13
c = 995 nm and LM13K07

c = 1200 nm. For both strains, the persistence length is assumed to be

identical, i.e. Lp = 2.8 µm, considering the similar structure of the two phages. Experimental data

(full symbols) are measured at pH 8 and IS=60 mM [22]. The suprahelix model (open symbols)

with h = 2.8Lp and with the binodal value Ciso corrected for the rod flexibility [23] is in reasonable

agreement with the measured cholesteric pitches considering the experimental error bars. Error

bars are determined as detailed in Methods.

of LM13K07
c = 1200 nm. As the local structure of the virus remains unchanged, these two

mutants only differing by their length, are assumed to have the same persistence length of

Lp = 2.8 µm. Experimental measurements are shown in Fig. S7 and compared against the

results of the suprahelix model computed for the two different phage lengths. The simulated

cholesteric pitch |P | is found to tighten by increasing the rod length, and is consistent

with the experimental data within the error bars. This observation gives further support

to the steric-based suprahelix model, in which the more pronounced helical shape of the

longer variants (with smaller h/Lc) is expected to increase the chirality of their cholesteric

phase in otherwise identical assembly conditions. These findings also qualitatively mirror
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the conclusions of recent studies of fractionated cellulose suspensions [24], thus suggesting

that such steric modes of chirality transfer may find broader potential applications within a

wider class of experimental colloidal systems.
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shape fluctuations and the origin of chirality in cholesteric phases of dna origamis. Science

Advances, 6(31):eaaw8331, 2020.

[9] Maxime M. C. Tortora. High-performance density functional calculations for cholesteric liquid

crystals. chiralDFT, https://doi.org/10.5281/zenodo.10823273, 2024.

[10] Zvonimir Dogic and Seth Fraden. Cholesteric phase in virus suspensions. Langmuir,

16(20):7820–7824, 2000.

[11] Massimo Bagnani, Paride Azzari, Cristiano De Michele, Mario Arcari, and Raffaele Mezzenga.

Elastic constants of biological filamentous colloids: estimation and implications on nematic

and cholesteric tactoid morphologies. Soft Matter, 17:2158–2169, 2021.

[12] Theo Odijk. Elastic constants of nematic solutions of rod-like and semi-flexible polymers.

Liquid Crystals, 1(6):553–559, 1986.

20
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