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Using simulations, we study the diffusion of rodlike guest particles in a smectic environment of rodlike
host particles. We find that the dynamics of guest rods across smectic layers changes from a fast
nematiclike diffusion to a slow hopping-type dynamics via an intermediate switching regime by varying the
length of the guest rods with respect to the smectic layer spacing. We determine the optimal rod length that
yields the fastest and the slowest diffusion in a lamellar environment. We show that this behavior can be
rationalized by a complex 1D effective periodic potential exhibiting two energy barriers, resulting in a
varying preferred mean position of the guest particle in the smectic layer. The interplay of these two barriers
controls the dynamics of the guest particles yielding a slow, an intermediate, and a fast diffusion regime
depending on the particle length.
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Understanding the dynamics of particles or objects in
crowded environments is important in many fields ranging
from traffic jams [1], evacuations of crowds, sheep herding,
evasive tumor growth, to caging in colloidal glasses [2–4].
The motion of a guest particle in a disordered crowded
environment is severely hampered by its surrounding
constituents. As most disordered systems are characterized
by only one relevant length scale (e.g., particle size), a
simple picture emerges: the bigger the particle the slower its
dynamics [5–8]. This phenomenon is invariant across
scales as demonstrated by the above-mentioned examples.
However, this simplepicture breaks downas the environment
becomes inhomogeneous and ordered, yielding additional
competing length scales and giving rise to remarkable
exceptions to this general rule.
The motion of particles in ordered environments has

been thoroughly studied in the field of liquid crystals,
finding that crowded environments with different degrees
of positional and/or orientational order lead to a wide
variety of dynamic behaviors. For nematic liquid crystals,
exhibiting long-range orientational order, the anisotropy of
the environment is transferred to the motion of the particles.
A fast longitudinal self-diffusion is observed in the direc-
tion parallel to the nematic director n̂ (the average particle
orientation), and a slow transverse self-diffusion in the
perpendicular direction [9–11].
In the case of long-range positional order, the dynamics

strongly depends on the dimensionality of the translational
order and the corresponding effective energy landscape. In
3D colloidal crystals, particles are confined to their lattice
positions, and the diffusion is largely determined by the

motion of defects [12–14]. In columnar liquid crystals,
showing 2D positional order, a liquidlike longitudinal
diffusion is observed within the columns, accompanied by
a transverse hopping-type dynamics between different
columns [15,16]. Finally, in smectic liquid crystal phases
characterized by a quasi-long-range 1D translational
order, a quantized hopping-type dynamics is found across
smectic layers as the particles experience an effective
one-dimensional periodic potential due to the lamellar
organization [17–19]. Furthermore, computer simulations
demonstrated cooperative motion of stringlike clusters of
particles across the smectic layers [20].
In general, the presence of positional and/or orientational

order introduces additional length scales to the system.
In the presence of guest particles, their interplay with the
various length scales associated with the structure increases
the complexity of the dynamics. On the one hand, the
diffusion of guest spherical particles in nematic phases of
rodlike host liquid crystals has been widely addressed in
literature [21–27], finding a faster diffusion in the direction
longitudinal to the nematic director field. On the other
hand, the diffusion of nonspherical particles in anisotropic
liquid crystalline environments is still largely unexplored.
Recently, Alvarez et al. [28] studied in experiments the
diffusion of tracer amounts of noncommensurate guest viral
rods in a smectic phase of shorter host fd filamentous
viruses with a size ratio Lguest=Lhost ≃ 1.3. Surprisingly,
they found that while the host particles experience the usual
hopping-type dynamics across smectic layers, the non-
commensurate guest particles undergo a fast and almost
continuous nematiclike diffusion, yielding the exceptional
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case of larger guest particles diffusing faster than the
smaller host ones. No significant differences between host
and guest particles were found in the transverse in-layer
diffusion. The typical slow hopping-type diffusion across
smectic layers was recovered for dimeric and trimeric
mutants of the host fd particles, namely for guest particles
with length ratios of 2 and 3, respectively.
In this Letter, we study using computer simulations the

dynamics of guest particles of varying lengths in a smectic
environment of host particles in order to unravel the
mechanism behind this highly counterintuitive fast diffu-
sion of large noncommensurate guest particles. We show
that by tuning the length of the guest rods with respect
to the smectic layer spacing their longitudinal dynamics
changes from a fast nematiclike diffusion to a slow
hopping-type dynamics via an intermediate switching
regime, thereby obtaining control over the speed and type
of behavior of the longitudinal diffusion. More importantly,
we determine the optimal rod size for either the fastest or
slowest diffusion, and rationalize this behavior in terms of a
complex 1D effective smectic periodic potential charac-
terized by two energy barriers that each rod feels in the
lamellar structure of the smectic phase. We show that the
interplay and relative height of the two energy barriers
control the dynamics of the guest particles, yielding a slow,
an intermediate, and a fast diffusion regime depending on
the particle length.
We model the experimental mixture of long and short

filamentous bacteriophage viruses as a binary mixture of
rigid rods. Each guest and host rod is modeled by a hard
spherocylinder, i.e., a cylinder of diameter d and length Lg
and Lh, respectively, capped at both ends with hemispheres
of diameter d, yielding an end-to-end length of Lg;h þ d

[Fig. 1(a)]. We introduce a tracer amount of Ng ¼ 6 guest
particles in a system of Nh ¼ 3072 host particles with a
length Lh ¼ 40d. The overall phase sequence of isotropic,
nematic, smectic-A (SmA), and smectic-B and/or crystal
phases of fd viruses [32] is well captured by that of hard
spherocylinders with Lh ¼ 40d [29], even though fd virus
suspensions also display a columnar phase [30]. The aspect
ratio of the host rods in the simulations is set such that it
roughly matches the effective rod length over diameter ratio
of the experimental system, thereby taking into account the
electrostatic repulsion of the fd viruses [32].
We equilibrate the system in a low-density SmA state

using Monte Carlo simulations in an isothermal-isobaric
ensemble, i.e., the pressure, temperature, Ng and Nh are
kept fixed. Note that the smectic layer spacing in simu-
lations is λ ∼ 1.1Lh, whereas λ ∼ 1.0Lhost in the experi-
mental system of filamentous viruses [32]. After full
equilibration we investigate using both standard and
dynamic Monte Carlo simulations [33,34] the longitudinal
dynamics along the z axis, parallel to the nematic director
n̂, for various Lg ∈ ½0.2; 2.5�Lh corresponding to various
size ratios r ¼ ðLg þ dÞ=λ. Within this range of lengths the
probability of finding guest rods in a transverse inter-
lamellar configuration is negligible [37,38]. We refer the
reader to the Supplemental Material [31] for technical
details on the simulations.
In Fig. 1(b), we present typical longitudinal trajectories

from both simulations and experiments, showing remark-
ably similar slow hopping-type dynamics of host particles
(r ∼ 1) as well as fast diffusive behavior of noncommen-
surate guest particles (r ∼ 1.3). For each particle trajectory
zðtÞ we measure the mean square displacement along the
director n̂, MSDðtÞ ¼ h½zðt0 þ tÞ − zðt0Þ�2i, and average

FIG. 1. (a) Snapshot from simulations of a guest spherocylinder (cyan) with cylindrical length Lg and diameter d diffusing in a host
smectic phase of layer spacing λ formed by hard spherocylinders (purple) with equal diameter d and length Lh ¼ 40d. (b) Example
trajectories of guest particles with varying size ratio r ¼ ðLg þ dÞ=λ along the nematic director n̂ of the host smectic phase in
simulations (top) and experiments (bottom) [28] showing the fast nematiclike diffusion of noncommensurate guest rods with r ∼ 1.3 and
discrete hopping-type diffusion of host particles (r ∼ 1). The conversion factor from the computational time unit τ to seconds
(τ ∼ 2 × 10−6 s) is discussed in the Supplemental Material [31]. (c) Longitudinal mean square displacement (MSD) of simulated guest
particles of varying size ratios r ¼ ðLg þ dÞ=λ, showing either a fast nematiclike diffusion for noncommensurate guest rods of r ∼ 1.3
and 0.3, or a subdiffusive regime for the other guest and host particles. The diffusion exponents γ ¼ 0.5 and 1 are indicated for
comparison [see Eq. (1)].
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the MSDs of all particles with equal length. In Fig. 1(c) we
show the MSDs for a selected set of size ratios r. For
particles with a length commensurate with the smectic layer
spacing (r ∼ 1) we obtain the typical MSD of particles in a
lamellar phase [18] with a cage-trapping plateau between
the short- and longtime diffusion regimes corresponding to
the intralayer and interlayer dynamics, respectively (see
Supplemental Material [31]). As the length of the guest
particles increases, the time interval for the caging becomes
shorter, and eventually disappears for r ∼ 1.25 when the
dynamics becomes nematiclike with a diffusive behavior
[Fig. 1(c)]. Upon further increasing the particle length, the
cage-trapping plateau reappears (r ∼ 1.45) and becomes
more pronounced as the dynamics becomes hopping-type
again for nearly commensurate dimers (r ∼ 1.90). Similarly,
for guest rods shorter than the smectic layer spacing, the time
interval of caging decreases (r ∼ 0.47) and eventually dis-
appears for guest particles of low anisotropy (r ∼ 0.29).
To quantify the long-term dynamic behavior, we deter-

mine the longtime diffusion coefficient Dk defined as half
the slope of the MSD at long times, i.e., MSDðtÞ ¼ 2Dktγ

(1), and we present Dk normalized by the particle diffusion
coefficient at infinite dilutionD0ðrÞ as a function of the size
ratio r in Fig. 2. In the range 1 ≤ r < 2, a strong increase of
the diffusion is observed with a maximum DkðrÞ=D0ðrÞ at
r ∼ 1.25, corresponding to a fast nematiclike diffusion of
particles whose length is not commensurate with the
smectic layer spacing. This yields an optimal value for
the fastest longitudinal diffusion remarkably close to the
particle length ratio for which fast diffusion was observed
in experiments [28]. For larger r the diffusion slows down
as the hoppinglike dynamics is retrieved. The slowest
diffusion is not found for particles twice the length of
the smectic layer spacing (r ∼ 2) but at slightly smaller

lengths (r ∼ 1.75). We also observe in Fig. 2 that the values
ofDkðrÞ=D0ðrÞ are in good quantitative agreement with the
experimental values marked by the purple symbols despite
the simplicity of our model. For guest particles shorter than
the host ones (r < 1), the fastest and the slowest dynamics
are obtained by noncommensurate particles of size ratio
r ∼ 0.25 and r ∼ 0.75 respectively, corresponding to the
fast nematiclike diffusion for the former and slow hopping-
like dynamics for the latter. Interestingly, the normalized
values for r < 1 of the diffusion coefficients for the slowest
and fastest dynamics are very similar to their corresponding
values for r > 1, emphasizing again that the shortest
particles do not necessarily diffuse the fastest. In the long
rod limit, i.e., for r > 2, we find another maximum of
DkðrÞ=D0ðrÞ at r ∼ 2.25.
The dependence of DkðrÞ=D0ðrÞ on the size ratio r in

Fig. 2 suggests a periodic behavior of the longitudinal
dynamics with a period set by the smectic layer spacing
λ. For each size ratio interval r ∈ ½n; nþ 1� with n ¼
0; 1; 2;…, the dynamics first speeds up as r increases and
the smectic caging becomes less severe, reaches a maxi-
mum value at r ≃ nþ 0.25 corresponding to the fastest
nematiclike diffusion, and then slows down and reaches a
minimal value at r ≃ nþ 0.75. This periodic behavior can
be explained by dividing the end-to-end guest rod length
Lg þ d ¼ rλ into a length lbrc that is commensurate with
brc smectic layers (where the floor function bxc denotes the
largest integer that is less than x), and an “excess” length of
lðr − brcÞ. The longitudinal dynamics of guest particles is
predominately determined by the excess part of the guest
rod, which creates voids in the smectic layers and affects
the caging of the lamellar phase. Here, the only effect of the
“commensurate” part of the particle is a general slowing
down of the dynamics with n (see the inset of Fig. 2).
To quantify the effect of the excess particle length, we

measure the effective potential βUSmðzÞ ¼ − ln½ρðzÞ� felt
by a guest rod, where ρðzÞ is the probability distribution
of finding a rod-shaped particle in an infinitesimal interval
of ½z; zþ δz� and β ¼ 1=kBT. The effective potential is
periodic due to the smectic host ordering, therefore ρðzÞ
is only measured in a single smectic layer 0 ≤ z < λ. In
Figs. 3(a)–3(f), we report the smectic potential for varying
length ratios 0 < r < 2. Surprisingly, we find that the
smectic potentials exhibit two barriers, or equivalently
two minima at zmin

1 and zmin
2 which merge into a single

minimum when r ≃ n, namely when particles are com-
mensurate with the layer spacing. We plot zmin

1 and zmin
2 for

varying r in Fig. 4, allowing us to distinguish three different
regimes as schematically illustrated in Fig. 3(g).
In the first regime (I) corresponding to size ratios

r ∈ ½n; nþ 0.3�, the guest particles are on average located
at the same position as their commensurate counterparts
with r ¼ n, i.e., in the middle of the smectic layers.
However, as they are longer than nλ, they create holes
in the adjacent smectic layers resulting in a release of the

FIG. 2. Longtime diffusion coefficientDkðrÞ normalized by the
infinite-dilution diffusion coefficientD0ðrÞ [31] of guest particles
as a function of the size ratio r. The experimental values of DkðrÞ
are shown in purple for r ¼ 1, 1.3, and 2 [28]. The inset shows the
raw diffusion coefficients. The background is colored according
to the three diffusion regimes displayed in Fig. 3, and the dashed
lines are guides to the eye.
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cage constraint thereby facilitating the interlayer diffusion
and speeding up the dynamics, with the fastest nematiclike
diffusion found for r ∼ nþ 0.25. In the opposite limit, the
third regime (III) having r ∈ ½nþ 0.6; nþ 1� exhibits the

slowest diffusion behavior and corresponds to guest par-
ticles which already have the same equilibrium position as
the next commensurate multimer (r ¼ nþ 1). Because the
guest rods are shorter than ðnþ 1Þλ, they first have to
diffuse within the smectic layer to reach one of its two
boundaries, before they can jump to the adjacent layer,
slowing down the longitudinal diffusion in comparison to
the one associated with commensurate particles. We denote
regime III as the slow diffusive regime. More intriguingly
perhaps is the regime II with r ∈ ½nþ 0.3; nþ 0.6�, where
the minima zmin

1 and zmin
2 correspond to the center-of-mass

positions at which one of the ends of the guest particles
touches one of the boundaries of the smectic layers
[Figs. 3(b) and 3(e)]. This was recently experimentally
observed for short rods dispersed in colloidal monolayer of
host rod-shaped particles with a length ratio r ∼ 0.5 [39]:
the short rods were found to strongly anchor to the
membrane interfaces, and only occasionally hop to the
opposite interface. Our results confirm this anchoring

FIG. 3. (a),(f) Effective potential USmðzÞ experienced by guest particles for varying size ratios r ¼ ðLg þ dÞ=λ in a smectic phase with
a layer spacing λ. The dashed vertical lines indicate the equilibrium positions of the rod particles, zmin

1 and zmin
2 , corresponding to the

minima of the ordering potential USmðzÞ. A video showing the variation of USmðzÞ with the size ratio r can be found in the SM [31].
(g) Sketches of the host (purple) and guest (cyan) particles at their equilibrium positions zmin

1 and zmin
2 for three exemplary size ratios

(r ¼ 1.25, 1.5, 1.75) corresponding to the different diffusion regimes.

FIG. 4. Center-of-mass positions zmin
1 and zmin

2 of the guest rods
corresponding to the minima of the effective smectic potential as
a function of size ratio r. The background is colored according to
the three diffusive regimes displayed in Fig. 3.
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behavior and extend it to particles even larger than the
lamellar spacing. The preferential adsorption of noncom-
mensurate guest rods at the interface of smectic layers can
be explained by the fact that guest rods at the interface
generates large voids that can be partially filled via small
angular fluctuations of neighboring host particles, thereby
hindering their diffusion. However, if the guest particle is at
the center of a smectic layer (or in between two smectic
layers), the resulting voids are smaller, making it harder
for host particles to occupy the empty space. This would
indeed require a higher tilt angle of the host rods, hence
generating a defect structure in the smectic organization.
As a consequence, the guest particles escape from this
central position and adhere to one of the two smectic layer
interfaces. In this regime II, referred as the switching
regime, the guest particles experience two potential barriers
of varying height [Figs. 3(b) and 3(d)] for varying r, which
results from a nontrivial interplay of the effective smectic
potentials that are felt by single host rods [r ∼ 1, Fig. 3(c)]
as well as by commensurate rods [r ∼ 2, Fig. 3(f)] and
which are out-of-phase in terms of barrier locations (see
Supplemental Material [31]).
In conclusion, we showed that the dynamics of guest

rods can be controlled by tuning the ratio r of their size
over the lamellar spacing. We observed that the longtime
diffusion coefficient Dk is a periodic function of r, as the
longitudinal dynamics is entirely determined by the excess
length lðr − brcÞ of the guest particle. We show that this
behavior can be rationalized by a 1D effective periodic
potential exhibiting up to two energy barriers, yielding a
slow, an intermediate and a fast diffusive regime, granting
complete control over the type and speed of the dynamics
of guest particles in a smectic environment.
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I. COMPUTATIONAL METHODS

We model the experimental mixture of host and guest fd-viruses as a binary mixture of

hard spherocylinders. We perform Monte Carlo simulations on a binary mixture of Nh =

3072 host rods of length Lh and diameter d and Ng = 6 guest rods of length Lg and diameter

d. We use a high-density ABC crystal state as our initial configuration, and we expand the

system via Monte Carlo (MC) simulations in the NPT ensemble to a low-density smectic

state at pressure βPv0 ≈ 6.39 with a smectic layer spacing λ ∼ 1.1Lh. We keep the

number of particles, Ng and Nh, the pressure P , and the temperature T fixed in the NPT

MC simulation, whereas the system volume V and the particle configurations (positions and

orientations) are evolved via random variations that are either accepted or rejected according

to the acceptance rules that enforce the correct statistical physics [1].

After equilibration of the system, we perform production runs in the NV T ensemble, i.e.

the number of particles N , volume V , and hence the density ρ = N/V are kept fixed, and

we track the positions of 3000 host particles and 6 guest particles to measure their diffusive

properties. In general, MC simulations are not guaranteed to yield realistic particle trajec-

tories, and do not provide a physical time scale. However, for sufficiently small maximum

displacements NV T -MC simulations with simple translational and rotational moves produce

trajectories that follow the correct Brownian dynamics. In the case of anisotropic particles,

the maximum displacements have to be tuned according to the self-diffusion properties of

each particle in order to enforce the correct anisotropy of the dynamics. More specifically, for

rod-like particles, the ratio between the maximum displacements parallel and perpendicular

to the particle axis δ‖/δ⊥ has to be equal to the ratio between the parallel and perpendicular

diffusion coefficients at infinite dilution D0,‖/D0,⊥ [2].

In this Letter, we study the dynamic behavior of guest rods in a host smectic environment

parallel to the nematic director n̂. However, reaching the long-term diffusive regime of highly

anisotropic particles in a smectic phase is a highly non-trivial computational effort. In order

to reach and explore the long-term regime of the longitudinal dynamics of guest particles in a

reasonable computational time, we increase the ratio between the parallel and perpendicular

maximum displacements to speed up the parallel diffusion relative to the perpendicular one.

Here, we assume that the parallel and perpendicular dynamics can be decoupled, i.e. that

the perpendicular diffusive behavior has a negligible effect on the parallel diffusion. In
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FIG. S1. Parallel MSDs (along the long rod axis) in the smectic-A phase from basic MC simulations

(in purple) after rescaling onto the MSDs from DMC simulations (in blue) for size ratios r = 0.56

(a), 0.92 (b), 1.53 (c), and 1.99 (d).

particular, we set δ⊥ = 0.08d and δ‖ = 5δ⊥ = 0.4d, and we find that for these values of the

maximum displacements, MC simulations consisting of ∼ 1.5 · 108 MC cycles are sufficient

to reach and adequately sample the long-term diffusive behavior. In particular, we save

the positions of the tracked host and guest particles every 103 MC steps, hence producing

trajectories of Nt ∼ 1.5 · 105 points.

We measure the MSD at discrete times t ∈ [1, Nt] usingNg trajectories zi = [zi,1, zi,2, . . . , zi,Nt
]

as

MSD(t) =
1

Ng

Ng
∑

i=1

1

(Nt − t)

Nt−t
∑

j=1

(

zi,(j+t) − zi,j
)2

. (1)

In order to determine the long-term diffusion coefficient D‖, we consider a wide collection

of time windows {[t0, t1]} in the long-time diffusion limit of the MSD. In each time window,
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we perform a fit of the MSD with γ = 1, and measure the reduced χ2. Subsequently, we

average the values of D of all time windows for which χ2 is smaller than a certain threshold

value. The statistical error on D is determined as the standard error on the average, and is

of about the symbol size or smaller as indicated in Fig. 2 of the letter.

To test the validity of our assumption on the decouping of the parallel and perpendicular

dynamics, we compare the MSDs from our MC simulations and the ones from simulations

performed using the Dynamic Monte Carlo (DMC) method introduced by Patti and Cuetos

[3]. In the DMC method, the maximum displacements of both translational and rotational

motions are carefully tuned according to the diffusive properties of the particles at infinite

dilution, resulting in reliable Brownian dynamics with respect to a physical unit of time

τ = µσ3/kBT , where µ is the solvent viscosity, σ the characteristic unit of length in the

system and T the solvent temperature. We note that in the case of a binary mixture (as

our guest/host particles mixture) a specific treatment is required as discussed in Ref. [4].

For every length of our guest particle that we consider, we perform an additional simulation

with the more accurate but slow DMC method. Subsequently, we map the short-time MSDs

from our basic MC simulations onto the ones from DMC simulations by rescaling the unit of

time. If this mapping is accurate, the dynamics using the basic MC simulations is sufficiently

reliable, and the rescaling of time onto the physical time unit τ can be used to compare the

dynamical properties with experiments. In Fig. S01 we show typical examples of such a

rescaling for varying size ratios r = (Lg + d)/λ of the guest rods with λ the smectic layer

spacing confirming the good mapping between the two approaches.

II. COMPUTATIONAL AND EXPERIMENTAL TIMES

In Fig. 1b of the Letter, we compare typical longitudinal trajectories of host and guest

particles from simulations and experiments on the same time scale. However, matching the

experimental and computational time scales is non-trivial, and deserves some discussion.

In the Section above we already showed that the mapping of the MSDs obtained from

basic MC simulations onto DMC simulations provides a physical time unit τ = µσ3/kBT ,

where µ is the solvent viscosity, σ the unit of length, and T the solvent temperature. In the

experiments of Ref. [5], the particles are dispersed in water at room temperature, for which

µ = 10−3 Pa · s and kBT = 4.11 · 10−21 J. In our simulations, we use the particle diameter
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d as our unit of length, and hence in the experimental system σ corresponds to the effective

diameter deff ∼ 20 nm of the fd viruses, where we have taken into account the electrostatic

repulsion between the charged viruses [6]. This results in a conversion factor τ ≈ 2 · 10−6 s.

To test this conversion factor, we perform DMC simulations of single particles and mea-

sure their infinite dilution diffusion coefficient Dsim
0 = 1.16 · 10−2d2/τ . Theoretically, the

diffusion coefficient Dth
0 of long rods (L/d ≫ 1) at infinite dilution is known and is expressed

as [2]:

Dth
0 =

kBT

3πµL
ln

(

L

d

)

. (2)

This yields for rods with an aspect ratio of L/d ∼ 40, a diffusion coefficient Dth
0 = 2.3 µm2/s,

which is in quantitative agreement with Dexp
0 ≈ 2µm2/s experimentally measured in very

dilute filamentous virus suspensions. Considering that d = 20 nm, with τ = 2 · 10−6 s, we

obtain Dsim
0 = 2.3 µm2/s = Dth

0 ≈ Dexp
0 , confirming the value of our conversion factor.

III. CAGING TIMES

As discussed in the Letter, the typical longitudinal MSD of a rod-like particle in a smectic

environment is characterised by a cage-trapping plateau in between the short- and long-time

diffusion regimes. We measure the extent of the caging effect upon varying the size ratio

r of the guest particle with respect to the smectic layer spacing. Given the MSD across

the three timescales for a given particle length, we perform three separate fits of the short-

, intermediate-, and long-time regimes of the MSD. At short and long times, we fit the

MSD with the theoretical expression for diffusive dynamics, MSD(t) = 2Dt, whereas at

intermediate time we fit it with the expression for subdiffusive dynamics, MSD(t) = 2Dtγ

with γ < 1. From the interception points between the fits at short and intermediate times,

and the fits at intermediate and long times, we estimate the typical caging time δt, as shown

in Fig. S02.

In Fig. S03 we report the caging time δt as a function of size ratio r. It clearly shows

the opposite trend as the diffusion coefficients shown in the inset of Fig. 3 of the Letter,

confirming the relationship between the shrinking of the caging plateau and the speeding

up of the dynamics.
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FIG. S2. MSD (in black) of guest rods with a size ratio (Lg + d)/λ = 0.73 in a host smectic

environment with a smectic layer spacing λ with fits (in purple) of the short-, intermediate-, and

long-time diffusion regimes. From the intercepts of the fits, we identify the time regimes in which

the dynamics switches between short-time diffusion to an intermediate-time caged sub-diffusion

with a caging time δt, to a long-time diffusion.

FIG. S3. Caging times δt as a function of the size ratio r = (Lg + d)/λ of the guest particles. The

dashed line is a guide to the eye.
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IV. ADSORPTION TO THE INTERFACE OF THE SMECTIC LAYERS

Most of the smectic potentials presented in the Letter have a characteristic shape with

two minima, implying that guest particles have two equilibrium positions (regime II). In

particular, as shown in the Letter, these minima correspond to positions in which either one

of the particle ends is adhered to the interface of a smectic layer.

FIG. S4. Sketches (top) and snapshots from actual simulations (bottom) of a guest particle of

length Lg = 1.5Lh (corrisponding to a size ratio r ∼ 1.36) and its neighbour host particles (whose

centre of mass is contained in a cylinder of diameter 3D and height 3λ around the guest particle).

When the guest particle adheres to an interface between layers (a and c) the voids created in the

adjacent layer are wide enough for host particles to occupy it and to hinder the diffusion of the

guest particle. Vice versa, when the particle sits in the center of a smectic layer (b), it creates

two voids which are too small to be populated by host particles and hence the guest particle can

diffuse away freely.

Fig. 4a-f of the main text shows that the two minima zmin

1 and zmin

2 of the effective

potentials are separated by two potential barriers located at z = nλ (barrier A) and z =

(n + 1/2)λ (barrier B). Monomers and “odd” multimers with r ∼ (2n + 1) feel exclusively

the barriers at z = nλ, and dimers and “even” multimers with r ∼ (2n+2) experience only

the barriers at z = (n+ 1/2)λ. As shown in Fig. S5a, guest particles in regime I experience

exclusively the same barrier as the preceding multimer, whereas in regime III they only feel

the same barrier as the successive multimer. In regime II, the dynamics of the guest rods

is affected by both barriers and switches from a “monomer”-like to a “dimer”-like behavior

upon changing r. Interestingly, in Fig. S5b we find that the sum of the barriers, accounting

for the total smectic caging felt by the guest particle, is minimal for r ∼ n+0.25, for which
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FIG. S5. (a) Height and (b) sum of the two potential energy barriers as a function of the size ratio

r for guest rods in a host smectic phase. The background is colored according to the three diffusive

regimes. Dashed lines are guides to the eye.

the fastest dynamics is observed, and maximal for r ∼ n+0.75, when the slowest dynamics

is achieved, confirming that the dynamic behavior of guest rods in a host smectic phase can

be rationalized in terms of the caging due to the lamellar environment
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