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Smectic blue phases are liquid crystalline phases which exhibit both three-dimensional-orientational order
and smectic positional order. X-ray scattering experiments reveal that at least one of these phases is not cubic,
as classical blue phases, but offers a hexagonal symmetry. A comparison of the experimental patterns with the
scattering patterns given by smectic double twist tubes sketched by Kamien is proposed.

PACS number~s!: 61.30.Eb, 61.10.2i

I. INTRODUCTION

Liquid crystals offer a wide variety of phases with long
range orientational order, but some phases like the smectic
phases also exhibit additional quasi-long-range translational
order. When the molecular mesogens are chiral, a spontane-
ous twist of the molecular orientation is observed. For in-
stance, the classical nematic phase, which exhibits only a
short range translational order, gives birth to the cholesteric
phase @1# characterized by a one dimensional periodic orien-
tational order with period or pitch much larger than the mo-
lecular sizes. At ‘‘higher’’ chirality, other phases called blue
phases @2# appear in a temperature range located between the
cholesteric phase and the isotropic one. Two of these blue
phases, BP1 and BP2, exhibit a long range 3-dimensional
orientational order, but classically only short range positional
order. They show a cubic crystalline structure with selective
Bragg reflections in the range or close to visible light. The
monodomains are facetted and these phases appear with
platelet textures under optical microscope. At ‘‘low chiral-
ity,’’ the BP1 and BP2 structures can be interpreted in terms
of a 3D periodic director field. Twist extends not only in one
direction like in the cholesteric phase but in both directions
perpendicularly to the director. One can thus build ‘‘double-
twist’’ cylinders whose size is determined by the tilt angle
(u) of the director at the surface with respect to the cylinder
axis. The ‘‘double twist’’ cylinder radius is thus of the order
of magnitude of the cholesteric pitch. The cubic structures
~Fig. 1! can then be described by cubic networks of double-
twist cylinders ~with a surface tilt angle u equal to 45°)
separated by defect lines ~disclination lines!. In the ‘‘high’’
chirality limit, this description is no longer valid and a biax-
ial order parameter has to be introduced @3#.

At lower temperatures smectic order may occur, but this
translational order is not always compatible with the twist
generated by the molecular chirality. For instance, the smec-
tic layers in the SmA phase cannot be continuously twisted.
Renn and Lubensky @4# predicted the existence of new
phases called twist grain boundary phases, or TGB phases,
which have been experimentally discovered in chiral thermo-

tropic liquid crystals by Goodby et al. in 1989 @5#. Several
TGB phases as TGBA and TGBC have already been identi-
fied @6–8#. These phases are usually observed upon cooling
the isotropic phase ~Iso! and an example of typical phase
diagram is

SmC*-TGBC-TGBA-Chol-BP-Iso.

A twist-grain boundary phase is characterized by both smec-
tic ordering and twist. In the SmC* phase, the layer normal
is tilted compared to the director and parallel to the twist axis
whereas, at least in the TGBA phase, the twist axis is perpen-
dicular to the layer normal. A continuous twist of the director
in this direction is not compatible with smectic ordering.
Renn and Lubensky have proposed a model where twist oc-
curs between blocks or grains, of size lb along the twist
direction. Each block exhibits perfect smectic ordering ~Fig.
2!. The size of the blocks is intermediate between the smec-
tic period ~typically few nanometers! and the pitch ~few hun-
dred nanometers!. Parallel screw dislocations lie in the walls
between the grains.

Recently @9,10# a new sequence was discovered in a chiral
material ~called FH/FH/HH-18BTMHC! with the phase se-
quence

SmC*-TGB phases-BP-Iso.

FIG. 1. Geometrical model of classical blue phases with 3D
orientational order, but no long range positional order. Such models
involve double twist tubes arrays and networks of disclination lines.
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Three blue phases have been observed in this compound:
BP3 between 74.7 °C and 73.7 °C, BP2 between 73.7 °C and
73.3 °C, BP1 between 73.3 °C and 73.1 °C ~upon cooling!
@11#. The phase diagram has been established using calori-
metric studies and optical microscopy. The pitch ~about
0.2 mm) has been measured in the TGBA phase using the
Grandjean-Cano method. The textures of these blue phases
are similar to those of classical blue phases and thus they
have been labeled in the same way. However, in this phase
diagram, there is no cholesteric phase between the blue
phases and the TGB phases. X-ray scattering studies on this
compound were reported in previous papers @12,13#. Such
studies give informations on the order at the molecular level.
By analyzing the width of the diffusion ring scattered by a
powdered sample, we have shown that the smectic order al-
ready appears in the blue phases, but with a correlation
length ~typically 30 nm! smaller than in the TGB phase
~typically 200 nm!. One can notice that smectic order had
been already detected in a metastable blue phase @14,15# in
compounds exhibiting a direct blue phase to smectic transi-
tion. This phase has been called BPS .

Using a well controlled oven, we succeeded in growing
monodomains of smectic blue phases @13#. The scattering
patterns performed on this monodomains exhibited four
peaks indicating that the smectic order is not isotropic as one
could expect for blue phases with short range smectic order,
but more extended in some directions of the orientational
cell. The correlation length associated with the peaks has
been estimated to typically 70 nm. The experimental setup
used at that time did not allow any rotation of the sample,
thus preventing from any exploration of the whole reciprocal
space. In order to perform this exploration, we have built an
oven in which the capillary can rotate around its axis ~the
vertical axis!. With this setup, we have grown up large mon-
odomains of smectic blue phases and detected four pairs of
smectic peaks exhibiting a hexagonal symmetry as detailed
in the following section ~II!. This important result indicates
that at least one of the smectic blue phase is not cubic, as
confirmed by the observation of birefringence under optical
microscope. Section III presents some computation of the
scattering pattern of the smectic double twist tubes sketched

by Kamien @19#. The comparison with the experimental pat-
terns shows that this model must be revisited, at least the
layers period distribution, to be fully compatible with our
data.

II. EXPERIMENTAL EVIDENCE OF A HEXAGONAL
SYMMETRY

In the setup we used in these experiments, the compound
is contained in a glass capillary placed inside the hot stage
whose description will be detailed in a forthcoming paper.
The main features of this hot stage are its transparency to x

FIG. 3. Schematic representation of the scattering conditions.

FIG. 4. Experimental scattering pattern obtained with tempera-
ture gradient close to 0.1 °C/mm at u5250°. The P0 and P1 peaks
are present.

FIG. 5. Experimental scattering pattern obtained with tempera-
ture gradient close to 0.1 °C/mm at u520°. Only the P2 peak is
observed.

FIG. 2. Schematic representation of a twist grain boundary
phase: smectic blocks are piled along the twist axis X. They are
separated by twist boundaries made by walls of parallel screw dis-
locations.
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ray with use of kapton and beryllium windows, a good sta-
bility in temperature ~up to 0.01 °C! and the possibility of
rotating the capillary around its main axis. Moreover, a slight
vertical temperature gradient along the capillary can be ap-
plied in order to control the nucleation of the crystalline blue
phases when cooling down @16#. We observe large mon-
odomain growing for small cooling rate ~typically 0.01 °C
per 5 min). X-ray scattering experiments have been done in
LURE ~Orsay, France! using synchrotron radiation ~beam
size: 0.530.5 mm2). After the monodomain has been grown
up by a slow cooling down of the sample from the isotropic
phase, different scattering patterns are recorded on imaging
plates as long as the capillary is rotated by steps of 5°. Let us
call u this rotation angle ~Fig. 3!. For each value of u we
obtain a diffusion ring characteristic of the smectic order.
This ring is not homogeneous and more intense in some
directions as already observed ~Figs. 4 and 5!. The intensity
I(u ,m) along the ring has been analyzed as a function of the
angle with the vertical axis (m). Then, by combining the
various profiles, we can determine the position and the ex-
tension of the smectic peaks.

We have performed several series of experiments with
two capillaries containing a small amount of FH/FH/HH-
18BTMHC for two different temperature gradients ~a: about
0.1 °C mm21; b: about 0.03 °C mm21). For low tempera-
ture decreasing rates, we have observed in the two cases ~a
and b! four pairs of peaks. In the following, each pair will be
characterized by the position (u ,m) of one of the peak, the
angular coordinates of the second one being then (u ,m
6180°) . Among the four pairs of peaks, one pair is more
intense and will be referred to as P0, the three other ones will
be noted P1, P2, P3. The position of the peaks are shown in
Tables I and II. From these values, we can deduce the angles
between the directions along which the peaks are located.
When two peaks are defined by the angles (u1 ,m1) and
(u2 ,m2), the angle a between the two associated directions
is

cos a5sin m1sin m2cos~u12u2!1cos m1cos m2 .
~2.1!

Tables III and IV clearly show that the three directions
along which P1, P2 and P3 are located are perpendicular to
the direction along which the more intense peaks are located
~P0!. Moreover these directions are separated by angles close
to 120°. This proves that there is a threefold axis in the
structure and only one and that quasi-long-range smectic or-
der is observed along this axis ~P0! but also along three axes
perpendicular to it ~P1, P2, P3!. At this point, it is important
to notice that the Bragg scattering is not due to the periodic-
ity of the orientational order and this for two reasons: the cell
is too large to be detected with x-ray scattering ~hundreds of
nanometers! and it does not offer a density modulation but
mainly an orientational order. X-ray scattering being sensi-
tive to a density modulation, we detect the Fourier transform
of some pattern in the cell linked to a periodicity of about 4
nm, that is the smectic order. Nevertheless, since the sym-
metry exhibited by these patterns is certainly correlated with
the orientational order, these experimental results give infor-
mation on the tridimensional cell. Therefore one can deduce
that the smectic blue phase we have studied is not cubic as
classical blue phase, but hexagonal. One can also notice that
we do not observe any peak along the temperature gradient.
The main peak P0 is quite always tilted at about 60° from the
vertical axis, that is from the temperature gradient. Thus the
orientation of the monodomains in the temperature gradient
cannot be interpreted by symmetry arguments since no sym-
metry axis of the structure is aligned with the symmetry axis
of the setup.

Phase diagram determined by calorimetric measurements
show two blue phases, BPSm1 and BPSm2 in a temperature
range of about 0.7 °C. Since BPSm2 first appears when cool-
ing down, we assume that the structure with a threefold sym-
metry we have determined is that of BPSm2 . In the BPSm1
temperature range ~less than 0.2 oC!, we no longer observe
clear peaks, probably because it is hard to nucleate another
crystalline phase when large monodomains of BPSm2 have
been grown @2,20#. In classical blue phases, BP2 and BP1 are
cubic and it has been shown, for instance under electric field,
that BP1 nucleates with a twofold axis parallel to a fourfold
axis of BP2 @17#. Without external field, several orientations

TABLE I. Positions of the four peaks P0, P1, P2, P3 with tem-
perature gradient 0.1 °C/mm ~case a!. m is the angle with the ver-
tical axis or with the temperature gradient. u is the rotation angle
around this axis. The monodomain has been grown with u50 along
the x-ray beam. The angles are given in degrees.

P0 P1 P2 P3

u 249.5 259 21 51.8
m 59.4 233 117 2112.4

TABLE II. Positions of the four peaks P0, P1, P2, P3 with
temperature gradient 0.03 °C/mm ~case b!. The angles are given in
degrees.

P0 P1 P2 P3

u 224.4 259.8 19.3 67.4
m 247 45.3 2128.1 94.9

TABLE III. Angles between the directions along which the
peaks are observed ~case a!. The angles are given in degrees.

P0 P1 P2 P3

P0 0 92 89 92
P1 92 0 118 120
P3 89 118 0 122
P4 92 120 122 0

TABLE IV. Angles between the directions along which the
peaks are observed ~case b!. The angles are given in degrees.

P0 P1 P2 P3

P0 0 93 90 92
P1 93 0 123 119
P3 90 123 0 118
P4 92 119 118 0
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of BP1 can be obtained from one BP2 monodomain. Under
microscope, at the transition from classical BP2 to classical
BP1 upon cooling, cross hatching appears in the BP2 mon-
odomains indicating that each of these monodomains cannot
generate a unique orientation of BP1 @20#. Single BP1 mon-
odomains have been obtained by direct nucleation from the
BP3 phase and never when the BP2 phase is present in the
phase diagram. This seems to be the case also for smectic
blue phases. To determine the structure of BPSm1 , two ways
are at present considered: either decreasing chirality by mak-
ing eneantiomer mixtures, since BPSm2 could disappear at
lower chirality like classical BP2, or applying an electric
field.

This evidence of a hexagonal symmetry proves that smec-
tic blue phases are really new phases and not only classical
blue phases with smectic fluctuations and that the smectic
order deeply disturbs the orientational order. A three dimen-
sional hexagonal structure has already been observed in clas-
sical blue phases but only under electric field @17#. A geo-
metrical vision of a hexagonal blue phase in terms of double
twist cylinders is given in Fig. 6. This structure is composed
of a first set of parallel cylinders located on a hexagonal
network. Three other sets of cylinders are perpendicular to
the first one and pile up along a helicoidal axis (31 or 62).
The experimental results obtained on BPSm2 can be easily
interpreted from this simple geometrical model by assuming
that the regions where the smectic order can extend easily are
the double twist cylinders cores. The P0 peaks correspond to
the first set of cylinders, the P1, P2, P3 peaks correspond to
the three other sets of cylinders. Such a geometrical model
does not help to understand why the orientational order sym-
metry changes. Indeed the prediction of the phase diagram of
classical blue phase requires sophisticated Landau theory
@3,18#. Then the influence of the smectic order cannot be
simply understood with use of geometrical model and the
thermodynamic understanding of hexagonal smectic blue
phases remains a challenge for theoreticians.

III. SMECTIC DOUBLE TWIST TUBES MODEL

A first approach for combining smectic order with three
dimentional orientational order, as sketched in Fig. 7 has
been proposed by Kamien @19#. As first pointed out in @13#,
the smectic order can extend easily in the core of the double
twist tubes. Then, like in TGB structures, the rotation of the

director is no longer continuous but involves annular grains.
In order to respect the cylindrical symmetry, these grains
cannot be filled up with perfect smectic layers. In the model
proposed by Kamien, the layers build half-helicoids ~gener-
ated by a half line and not a full straight line! wrapping
around the main axis of the tube, except for the central core
filled with a perfect smectic structure. The first annular grain
corresponds to n1 half-helicoids. The second one, as moving
away from the core, corresponds to n2 half-helicoids (n2
greater than n1) and so on. The boundary between two ad-
jacent grain can be described by a wall of wrapping disloca-
tion lines. Between the first annular grain and the core, there
are n1 dislocation lines. Between the first annular grain and
the second one, there are (n22n1) dislocation lines and so
on. The smectic double twist tube of length L, as described
by Kamien, is built by different annular grains. The core of
radius R1 is pure smectic with period d. Its contribution in
the scattered intensity is a peak located at q5(0,0,2p/d)
which extends over a distance 1/L in the z direction and 1/R1
in the radial directions. Then one encounters different annu-
lar grains with increasing values of the number n of helicoids
increasing more rapidly that the radii limiting the grains. The
main characteristic of each annular grain is the number n of
half helicoids which build it, the period a of each helicoid,
the minimum radius R1 and the maximum radius R2. At a
distance r from the main axis, the distance d(r) between
smectic layers along the layer normal and the tilt angle u(r)
of the director and the layer normal with respect to the tube
axis are given by

d~r !5

a

n
cos u~r !, ~3.1!

tan u~r !5

a

2pr
. ~3.2!

From these equations, one can see that the tilt angle de-
creases with increasing r although there is no twist inside
each grain ~Appendix A!. The distance between the smectic
layers increases with increasing r, which implies some con-

FIG. 6. Geometrical model of a 3D hexagonal blue phase based
on an array of double twist tubes.

FIG. 7. Schematic representation of a smectic double twist tube
~courtesy of Kamien!.
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tribution to the elastic energy. The boundary condition be-
tween two grains, noted 1 and 2 are at the boundary (r
5R):

d1~R !5d2~R !, ~3.3!

u2~R !5u1~R !1Du . ~3.4!

The number of dislocations at the boundary between the two
grains is just given by N5n22n1. The whole determination
of the smectic double twist tube configuration, that is all the
characteristics of the grains, implies a generalization of the
approach of Renn and Lubensky for the TGB phase. In their
model, a simple argument can give the grain size ~Fig. 2!. If
the screw dislocations within each grain boundary are sepa-
rated by a distance ld , then the rotation angle of adjacent
blocks is given by Du5d/ld where d is the smectic period
~for small angles!. The size of the blocks lb is also linked to
Du , the rotation angle between two adjacent grains, through
the relation: Du/2p5lb /p where p is the twist period.
Therefore the two lengths lb , the size of the blocks, and ld ,
the distance between the screw dislocations, are related to d
and p via ldlb5dp/2p . A reasonable estimation of the size
of the blocks can be obtained by taking lb5ld5Adp/2p .
Thus the size of the blocks in the TGB phase is intermediate
between the smectic period ~typically few nanometers! and
the pitch ~few hundred nanometers!. The extension of the
TGB model to the smectic double twist tube configuration
has not yet been done and the cylindrical symmetry does not
allow a simple estimation of the size of the grains. Then we
have chosen arbitrarily one configuration to sketch the main
features of the Fourier transform of a smectic double twist
tube. The smectic double twist configuration we have chosen
is composed of five grains ~Appendix B!. The main charac-
teristics of its architecture are as follows: the width of the
grains is nearly the same, the twist angle at each boundary is
close to 10°, as the one measured on TGBA phase, the inten-
sity scattered by each grain is roughly the same for all the
grains. In this configuration, the distances between the screw
dislocations inside the boundaries are comparable with the
width of the grains. In the classical model of blue phases, the
radius of the double twist tube is imposed by the kissing
conditions between perpendicular tubes and the tilt angle at
the surface of the tubes is 45°. In the model sketched by
Kamien, this kissing condition imposes some vanishing of
the smectic order in between the tubes and therefore the tilt
angle of the director at the surface of the smectic double
twist tube cannot be determined only by geometrical estima-
tions, energetical considerations are also required.

The scattering pattern of such a configuration is sketched
on Fig. 8. It has been computed as sketched in Appendix C.
The circle drawn on this figure is related to the period of the
smectic core. The intensity scattered by each annular grain is
located on a ring whose intersection with the (qx ,qy) plane
consists on two segments as drawn in Fig. 8. Therefore the
whole scattering pattern looks like a discontinuous arc. Its
extension roughly corresponds to the director orientation at
the external surface of the double twist tube. Figure 8 has
been drawn using the approximation of infinite double twist
tubes. In that case, the intensity is located at a precise value
of qz5qo . For the variation of the intensity upon qx , one

can introduce the Bessel function of order n in the Fourier
transform of a set of n helicoids in the computation of the
factor structure of the tubes. The scattered intensity thus ex-
hibits some maximum in the qx direction depending on the
number of helicoids inside the grain and on the limiting radii
of the grain . In our case, the smectic order is not long range
order. Numerical computations have shown that the maxi-
mum of intensity is shifted towards larger qx for qz larger
than qo and lower qx for qz lower than qo . Therefore the
segments are deformed but they mean position remains the
same. The following conclusions thus remain valid even for
finite range smectic order. In Fig. 8, one can see that the ring
on which is located the scattered intensity is close to the
circle which corresponds to a powder of perfect smectic do-
mains, but it is also obvious that it deviates from it for the
last grains. This is due to the regular increase of the smectic
period that is intrinsically present in the model. Indeed the
smectic period increases with r, the distance to the main axis,
inside a grain and this period is continuous at the boundary
between two adjacent grains. The increase of the smectic
period in the direct space thus appears as a shift of the maxi-
mum intensity towards lower values of q in the reciprocal
space.

The experimental patterns I(Q ,m ,u) where Q is the scat-
tering vector modulus, m the angle with the vertical axis and
u the rotation angle around the vertical axis, exhibit for given
u intense arcs but without any discontinuity. This can be
easily explained by the fact that the scattering volume ~about
0.25 mm3) contains more than 1010 hexagonal cells if one
assumes that the monodomain fills the capillary. Then there
are certainly statistical and thermal fluctuations of both the
orientation and the configuration of the smectic double twist
tubes. The continuous arc that is experimentally observed
can be seen as some average of discontinuous arcs over some
disorientation. To get more information from the experimen-
tal patterns, and particularly on the variation of the smectic
period, we have performed a detailed analysis of the peak
profiles. For each peak, we have taken the scattering pattern
performed for the angle u as close as possible as those indi-
cated in Table I. Then we have measured the extension of the
experimental intense arc for the different peaks. The FWHM
~full width at height medium! of the intensity along the arc
~integrated over its width! is typically around Dm540° for

FIG. 8. Schematic representation of the Fourier transform of a
smectic double twist tube. The circle is related to a constant smectic
period.
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the P0 peak and around Dm530° for the P1, P2, P3 peaks.
The P0 peak is the more intense and more extended than the
three other ones. We have also explored the radial width of
the P0 peak (u550°). For each value of m around the main
value m559.4°, we have determined the position of the
maxima of the scattered intensity Qm(m) and the value of the
FWHM. The results are shown in Figs. 9 and 10. It is clear
that the location of the maxima moves towards larger values
of Q and not towards smaller ones as expected, in the model
proposed by Kamien, when moving away from m(P0)
559.4°. They are located in between a perfect circle of ra-
dius Qo , the value of Q at the absolute maximum, and a
straight line ~full line in 9!. The radial width of the peak
(DQ) increases when moving away from the central position
(m559.4°). It seems non-symmetrical but this effect could
be due to the beam shape: the horizontal focus of the beam
and the vertical one are not identical.

Nevertheless, even taking into account some fluctations in
the model of smectic double twist tube, one should observe
the shift of the location of the maximum intensity along the
radial direction of the reciprocal space towards lower values
of Q and not larger ones. This is not what we observe ex-
perimentally. The real smectic double twist tube configura-
tion could be different from the considered one. Neverthe-
less, the increase of the smectic period should be revealed by
the scattering pattern. This means that the behavior of the
distance between the layers could be not correctly described
in the model of Kamien. We have also verified that the ex-
perimental patterns cannot be explained by a simple model
involving only smectic cores without any helicoid with finite

extension and fluctuating orientation. Therefore to explain
our experimental observations, two ways can be investigated.
The first one consists in revisiting the boundary condition on
the smectic period in the model of Kamien. Intoducing some
edge component in the dislocations would allow for a jump
in the smectic period when going from one grain to the other.
That means that the dislocations could not be pure screw
ones but could also have an edge component. Therefore the
mean smectic period could be the same inside all the grains
as the smectic period in the core. One can then wonder how
the scattering pattern would be modified. The second way of
investigation would be considering some tilt of the mol-
ecules inside the layers that is some SmC feature occuring.

IV. CONCLUDING REMARKS

These experiments clearly show that smectic blue phases
are really original phases since at least one of them is not
cubic as classical blue phases, but exhibits a hexagonal sym-
metry. This symmetry has been detected on the smectic order
and not yet on the orientational cell. The determination of the
symmetry of the other smectic blue phase is in progress. We
do not yet understand why the smectic order so much dis-
turbs the tridimensional order changing the cubic symmetry
into a hexagonal one. A full understanding of the phase dia-
gramm probably requires both sophisticated Landau theory
as for classical blue phases and physics of defects as for
TGB phases. This remains a great challenge for theoreti-
cians.

ACKNOWLEDGMENTS

We have much appreciated the kindness and the effi-
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APPENDIX A: NO TWIST FOR THE NORMAL TO AN
HELICOID

Although an helicoid is a chiral architecture, the normal to
its surface does not twist. From a more general point of view,
a normal to any surface cannot twist. Indeed let us consider a
family of surfaces determined by the following equation:

f ~x ,y ,z !5C . ~A1!

The normal n is just given by

n5

“ f

u“ f u
. ~A2!

Then

“`n5“
1

u“ f u
`“ f ~A3!

and therefore

~“`n!•n50. ~A4!

This last equation indicates that the normal to a surface can-
not twist. This is also true for an helicoidal surface even if

FIG. 9. Analysis of the profile of the P0 peak ~Table I!. The
dots indicate the location Qm of the maximum intensity along the
radial direction. Qo is the value of Qm at the absolute maximum.
Qm /Qo51 corresponds to a constant smectic period ~circle of Fig.
8!.

FIG. 10. Analysis of the profile of the P0 peak ~Table I!. The
dots indicate the width of the peak ~full width at height medium!

along the radial direction as a function of the angle m ~in degrees!.
It slightly increases when moving away from the absolute maxi-
mum.
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this surface is chiral, that is non-identical to its mirror image.
In that case, this can be seen directly on the expressions of
the normal components in cylindrical coordinates (r ,f ,z):

nr50, ~A5!

nf52sin u , ~A6!

nz5cos u . ~A7!

Then “`n has two nonvanishing components:

~“`n!f5sin u
]u

]u
, ~A8!

~“`n!z5
sin u

r
2cos u

]u

]r
. ~A9!

Therefore,

n•~“`n!52

]u

]r
1

sin u cos u

r
. ~A10!

Using tan u(r)5a/2pr , one can easily show that n•(“

`n)50. Therefore, even if u varies as a function of r, the
normal to the helicoid does not twist.

APPENDIX B: CONSTRUCTION OF A DOUBLE TWIST
TUBE CONFIGURATION

Let us first recall the relationship between the various
parameters in an annular grain composed of n helicoidal
sheets. a is the period of each helicoid and its equation is in
cylindrical coordinates r ,f ,z is

f52p
z

a
5qaz . ~B1!

The normal to the helicoid which in our case is parallel to the
director ~SmA case! is

nr50, ~B2!

nf52sin u , ~B3!

nz5cos u . ~B4!

At the distance r from the main axis, u is given by

tan u5

a

2pr
~B5!

and the distance d between the layers, which is the smectic
period, is

d~r !5

2pr sin u

n
. ~B6!

At the boundary between two annular grains, relationships
between the various parameters can be deduced from the
variation of the tilt angle u and the smectic period d. In the
model proposed by Kamien, the smectic period is continuous
through the boundary. The tilt angle is discontinuous since it
is a twist boundary. The twist angle will be called Du . In the
following equations, indexes 1 and 2 will be related to the
two sides of the boundary located at the distance R from the
main axis. At the boundary, all the following equations must
be verified:

u25u11Du , ~B7!

tan u15

a1

2pR
, ~B8!

tan u25

a2

2pR
, ~B9!

sin u1

n1
5

sin u2

n2
. ~B10!

We have built a smectic double twist tube following these
rules. We have imposed a twist angle Du close to 10° and
we have chosen the radii such as the intensity scattered by
each grain is nearly the same for all the grains. The charac-
teristics of the smectic double twist tube we have used to
compute the scattered intensity profile are listed in Table V.

APPENDIX C: FOURIER TRANSFORM OF AN ANNULAR
GRAIN COMPOSED OF N HELICOIDAL SHEETS

Let us consider an annular grain composed of n half heli-
coids of period a with regular spacing. The equation of a half
helicoid in cylindrical coordinates r ,f ,z is

f52p
z

a
5qaz , ~C1!

where a is the period of each helicoid along the tube axis.
The grain extends over a radius range: R1,r,R2. Let us
call L the length of the tube which corresponds to the range
of the smectic order. Along the grain axis, this architecture is
periodic with a period ao equal to a/n and close to the smec-

TABLE V. Arbitrary parameters describing the smectic double twist tube configuration used in the
computation of the Fourier transform.

Grain n R1 R2 a a/n u(R1) u(R2) d(R1) d(R2)

Central grain 0 11 nm 0° 0° 4 nm 4 nm
Grain I 3 11.5 nm 22 nm 12.169 nm 4.056 nm 9.56° 5.03° 4 nm 4.04 nm
Grain II 9 22 nm 32 nm 37.694 nm 4.16 nm 15.25° 10.62° 4.04 nm 4.116 m
Grain III 18 32 nm 41 nm 79.71 nm 4.43 nm 21.63° 17.19° 4.116 nm 4.23 nm
Grain IV 27 41 nm 49 nm 127.43 nm 4.72 nm 26.32° 22.48° 4.23 nm 4.36 nm
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tic period. The pattern which reproduces upon the period ao
is just one turn of one helicoid. Due to this periodicity, the
intensity along this axis will be located around discrete val-
ues of qz , that is qz5pqo where qo52p/ao and p is an
integer. In our experiments, we only see the first order peak
p51 close to 2p/d where d is the smectic period. The width
of this peak along the z axis is linked to the extension of the
smectic order in this direction and varies as 2p/L . In a pre-
vious experimental paper, it has been estimated to about 70
nm @13#. Due to the symmetry around the grain axis, the
scattered intensity must be invariant under rotation around
this main axis. Its variation upon q1, the distance to the grain
axis in the reciprocal space, then depends on the structure
factor of one turn of helicoid. Therefore the whole structure
factor A(q) of the annular grain with n half helicoids for a
scattering vector q5(q1,0,qz) in the x ,z plane, is given by

A~q!5 (
k51

m

expiqzkaoE
0

a

dzE
R1

R2
drA11qa

2r2

3expiq1r cos(qaz)expiqzz, ~C2!

where m is the total number of turns of helicoids over the
distance L and dzdrA11qa

2r2 the elementary area of each

helicoid. For qz5qo ~first order, p51), the scattered ampli-
tude along the radial direction is then given by

A~q1 ,qo!5nmE
R1

R2
drA11qa

2r2E
0

a

dz expiq1r cos(qaz)expiqoz.

~C3!

The last integral involves Bessel function of order n

E
0

a

dz expiq1r cos(qaz)expiqoz
5qo

21Jn~q1r !. ~C4!

The Bessel function Jn(x) presents some maximum for in-
creasing values of x with increasing n. Therefore the inten-
sity scattered by one annular grain will be maximum for

qz5qo6;2p/L ~C5!

and

q1;
max~Jn!

R
. ~C6!

where max(Jn) is the position of the first maximum of the
Bessel function of order n and R is the mean value of the
annular grain radius.
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